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1 
PRELIMINARIES 

Structure 

1.1. Introduction. 

1.2. Definitions. 

1.1. Introduction. This chapter contains definitions and results related to groups, cyclic group, 
subgroups, normal subgroups, permutation group, centre of a group, homomorphism and isomorphism. 
All of these results will be helpful throughout the further study of the course. 

1.1.1. Objective. The objective of the study of these results is to understand the basic concepts and have 
an idea to apply them in further study of the course. 

1.2. Definitions. 

1.2.1. Cartesian Product of Two Sets. Let A and B be two non-empty sets. Then, the set of all distinct 
ordered pairs whose first co-ordinate is an element of A and whose second co-ordinate is an element of 
B is called cartesian product of A and B and is denoted by A×B . For example, let 

   A = 1,2 ,  B = 4,5 ,  then 

        A×B = 1,4 , 1,5 , 2,4 , 2,5  and         B×A = 4,1 , 4,2 , 5,1 , 5,2 .  

Thus, in general, A×B  B×A  if A  B . Also, A×B =   if A or B or both of A and B are empty sets. 

1.2.2. Function. Let A and B be two given non-empty sets. A correspondence denoted by f, which 
associates to each member of A a unique member of B is called a function. The function f from A to B is 
denoted by f : A   B. 

1.2.3. Binary Operation. A mapping f : S S  S   is called a binary operation on the set S. 

1.2.4. Algebraic Structure. A non-empty set S equipped with one or more binary operations is called an 
algebraic structure. Suppose ‘*’ is a binary operation on S. Then, (S,*) is called an algebraic structure. 

1.2.5. Group. LetG be a non-empty set with a binary operation ‘*’. Then, G is called a group w.r.t. 
binary operation ‘*’ if following postulates are satisfied: 

(i) Associativity 
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(ii) Existence of Identity 

(iii) Existence of Inverse. 

1.2.6. Abelian Group. A group G is called an Abelian group or commutative group if in addition to 
above postulates G also satisfies the commutative law. 

1.2.7. Important Results. 

(i) The identity element in a group is unique. 

(ii) Every element in a group have a unique inverse. 

(iii) If a,b,c be elements of G such that ab = ac, then b = c (Left cancellation law) 

       and ba = ac, then b = c (right cancellation law) 

(iv) If a G , then   1-1 .a a

  

(v) If a,b G , then   1 1 1.ab b a    

(vi) If G is an Abelian group, then for all a,b G  and any integer n , we have  ab .n n na b  

(vii) If every element of the group is its own inverse, then the group is Abelian. 

(viii) If a group has a finite number of elements, this number is called the order of the group and the 
group is called finite group. A group with an infinite number of elements is called an infinite group. 

(ix) If G is a group such that  ab n n na b  for three consecutive integers m and for all a,b G , then G is 
Abelian. 

1.2.8. Subgroup. A non-empty subset H of a group G is said to be a subgroup of G if H itself is a group 
w.r.t. the same binary operation as in G. 

1.2.9. Proper and Improper subgroups. The subgroups {e} and G itself are called improper subgroups 
of G. All other subgroups, other than {e} and G, are called proper subgroups of G. 

1.2.10. Coset of a Subgroup. LetG be a group and H is any subgroup of G. Let ‘a’ be any element of G. 
Then, the set  Ha = ha : h H  is called a right coset of H in G generated by ‘a’. A left coset aH can be 
defined in a similar way. Also, a subset is called a coset of H in G generated by ‘a’ if Ha = aH. 

1.2.11. Normal Subgroup. A subgroup N of a group G is said to be a normal subgroup of G iff Na = aN 
for all a G , that is, right and left cosets are same for every element of G. We denote a normal 
subgroup N of a group G by   N G . 

1.2.12. Remark. (i) A subset H of a group G is a subgroup iff -1 Hab   for all , Ha b . 

 (ii) A finite subset H of a group G is a subgroup iff Hab  for all , Ha b . 

(iii)  Let H and K be two subgroups of a group G. Then, the set 
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  HK = x : x = hk where h H, k K   

  is a subgroup of G iff HK = KH. 

(iv) If H is a subgroup of G then Hg = H = gH iff Hg . 

(v) Any two right(left) cosets of a subgroup are either disjoint or identical. 

(vi) If H is a finite subgroup of G. Then,    H  = o Hao  for all Ga . 

(vii)  A group  G e  which does not have any non-trivial normal subgroup is called a simple 
group. 

(viii) A subgroup H of a group G is normal iff 1g hg H  for every , .h H g G   

(ix)  Every subgroup of an Abelian group is a normal subgroup. 

(x) Let H be a subgroup of G. The number of distinct right cosets of H in G is called the index of H 
in G and written as [G : H]. 

(xi) If [G : H] = 2, then H is normal in G. 

(xii) A subgroup H of a group G is a normal subgroup of G iff the product of two right cosets of H in 
G is again a right coset of H in G. 

(xiii) Every subgroup of a cyclic group is cyclic. 

(xiv) Order of a finite cyclic group is equal to the order of its generator. 

(xv) If the order of a group is a prime number, then the group is cyclic and hence Abelian. 

1.2.13. Cyclic group. A group G is said to be cyclic group generated by an element a G  if every 
g G  is such that tg a  for some integer t. 

1.2.14. Order of an element. Let G be a group and a G  and the composition being denoted by 
multiplication. By the order of an element a G , we mean the least positive integer n, if exists, such 
that na e , the identity in G. 

1.2.15. Results. (i) Let G be a finite group and a G , then    o a o G . 

(ii) Let G be a finite group and a G , then  o Ga e . 

(iii) If a G  and  o a n , then ta e  iff /n t (n divides t). 

(iv) If  o a n , then    . . . ,
k no a

g c d n k
 . 

1.2.16. Homomorphisms. If  ,.G  and  ,*G  are two groups. A mapping :f G G  is called a 

homomorphism, if      . *f x y f x f y  for all ,x y G . 
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1.2.17. Results. If f  is a homomorphism from the group G to the groupG , then 

(i)  f e e , where e  and e are identities of G  and G  respectively. 

(ii)      11f g f g
  for all g G . 

(iii) it is called epimorphism, if it is onto. 

(iv) it is called monomorphism, if it is one – one. 

(v) it is called isomorphism, if it is one – one and onto. We write as G G  

(vi) it is called endomorphism, ifG G . 

1.2.18. Kernel of a Homomorphism. Let :f G G be a homomorphism. Then, the kernel of f  is the 

set   : ,  the identity element of Kerf g G f g e G   . 

It should be noted that: 

(i)   .Kerf G  

(ii) f  is monomorphism iff  .Kerf e  

(iii) A homomorphism from a simple group is eithe trivial or one-to-one. 

1.2.19. Quotient Group. Let G be a group and H be a normal subgroup of G, then the set G/H (G mod 
H) of all cosets of H in G is a subgroup w.r.t. multiplication of cosets. Itis called quotient group or factor 
group of G by H. If ,a b G , then HaHb = Hab. The identity element of G/H is H. 

1.2.20. Canonical Homomorphism. The mapping : /f G G H  defined by  f g Hg for all g G

is an onto homomorphism, where H be a normal subgroup of G. It is called natural or canonical 
homomorphism and Kerf H . 

1.2.21. Fundamental Theorem of Homomorphism. If G is homomorphic image of G under f (that is, 

f  is onto), then ker
G Gf  . 

1.2.22. First Theorem of Isomorphism. Let f  be a homomorphism of a group G  onto a group G . Let 

K  is any normal subgroup of G  and     1:K x G f x K f K    . Then, K  is normal subgroup of 

G  containing ker f  and .G G
K K
  

1.2.23. Second Theorem of Isomorphism. Let H  and K are subgroups of any group G, where   H G

. Then, .K HK
H K H  
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1.2.24. Third Theorem of Isomorphism. Let G  be any group and ,H K  be two normal subgroups of 

G  such that H K . Then, .
G

G H
K K

H
  

1.2.25. Permutations. SupposeS is a finite set having n distinct elements. Then, a one-one mapping of S 
onto itself is called a permutation of degree n. 

 Let  1 2, ,..., nS a a a  be a finite set having n distinct elements. If :f S S is a one-one onto 

mapping, then f  is a permutation of degree n. Let      1 1 2 2, ,..., n nf a b f a b f a b   , where 

   1 2 1 2, ,..., , ,..., .n na a a b b b  Then, f  is written as 1 2

1 2

 . . . 
 . . . 

n

n

a a a
f

b b b
 

  
 

. 

If S is a finite set of n distinct elements, then we have n  distinct arrangements of these n elements. So 
there will be n  distinct permutations of degree n. the set of all permutations of degree n is called 
symmetric set of permutations and is denoted by  or n nP S . 

1.2.26. Product of Permutations. Product of two permutations f and g of degree n is given by first 

carrying out the operation defined by g  and then by f . It is denoted by fog . If 1 2

1 2

 . . . 
 . . . 

n

n

a a a
f

b b b
 

  
 

 

and 1 2

1 2

 . . . b
 . . . c

n

n

b b
g

c c
 

  
 

. Then, 1 2

1 2

 . . . 
 . . . c

n

n

a a a
gof

c c
 

  
 

. 

1.2.27. Results. (i) The set Snof all permutations of n symbols is a finite group of order n  w.r.t. product 
of permutations. 

(ii) This group is Abelian for 2n   and non-abelian for 3n  . 

1.2.28. Cyclic Permutation. Let 1 2 1

2 3 1 1

 . . .   . . . 
 . . .   . . . 

k k n

k n

a a a a a
f

a a a a a




 
  
 

. It is cyclic of length k and can be 

written as  1 2  . . . kf a a a . 

1.2.29. Transposition. A cyclic permutation of length 2 is called a transposition. 

1.2.30. Inverse of a Cycle. Let  1 2  . . . kf a a a be a cycle of length k and degree n. Then, 

   11
1 2 1 2  . . .   . . . .k kf a a a a a a    

1.2.31. Disjoint Cycles. Two cycles are said to be disjoint if they have no object in common in their 
one-rowed representation. 

1.2.32. Results. (i) Any two disjoint cycles commute with each other. 
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(ii) A permutation is said to be an “even permutation” if it can be expressed as a product of an even 
number of transpositions and is called “odd permutation” if it can be expressed as a product of odd 
number of transpositions. 

For example, (1 2 3 4 5 ) = (1 2)(1 3)(1 4)(1 5) which is product of even number of permutations and so 
is even permutations. 

(iii) Product of two even(odd) permutations is again an even permutation. 

(iv) The set of all permutations in Sn is a normal subgroup of Sn, is denoted by An and is called 

alternating group of order n and has 
2
n  elements. 

(v) The group An is simple for n = 1,2,3. But A4 is not simple. However, An is simple for 5n  . 

1.2.33. Centre of a group. Let G be a group then the centre of G is given by 

       :  for all .Z G C G x G xy yx y G      

1.2.34. Normalizer of a subgroup. Let G be any group and H be its subgroup. Then, normalizer of H in 
G is given by 

     : .N H x G xH Hx    

N(H) is the largest subgroup of G in which H is normal. In particular,     iff .H G N H G   

1.2.35. Result. (i) If   no G p  for some prime p, then centre of G is non-trivial. 

(ii) If   2o G p , where pis a prime, then G is abelian. 

Books Suggested: 

1. Luther, I.S., Passi, I.B.S., Algebra, Vol. I: Groups, Vol. III: Modules, Narosa Publishing House 
(Vol. I – 2013, Vol. III –2013). 

2. Sahai, V., Bist, V., Algebra, Narosa Publishing House, 1999. 

3. Malik, D.S., Mordenson, J.N. and Sen, M.K., Fundamentals of Abstract Algebra, McGraw Hill, 
International Edition, 1997. 

4. Bhattacharya, P.B., Jain, S.K. and Nagpaul, S.R., Basic Abstract Algebra (2nd Edition), 
Cambridge University Press, Indian Edition, 1997. 

5. Artin, M., Algebra, Prentice-Hall of India, 1991. 



 

 
 

2 
THE SYLOW THEOREMS 

Structure 

2.1.Introduction. 

2.2.Conjugate of an element. 

2.3.Commutator. 

2.4.The Sylow Theorems. 

2.5.Structure of Finite Abelian Groups. 

2.6.Survey of Groups. 

2.7.Check Your Progress. 

2.8.Summary. 

2.1. Introduction. This chapter contains many important results related to the p-groups, Sylow p-
subgroups, equivalent classes of the Sylow subgroups, number of sylow p-subgroups.  

2.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Conjugate of an element. 

(ii) Sylow First Theorem. 

(iii) Sylow Second Theorem. 

(iv) Sylow Third Theorem. 

(v) Survey of groups. 

2.2. Conjugate of an element. Let G be any group and a, b   G, then a is called conjugate of b if there 
exists an element x G such that a = x 1 bx. 

2.2.1. Exercise. The relation of conjugacy is an equivalence relation. 

2.2.2. Equivalence Class. Let aG, then equivalence class or conjugate class of ‘a’ is given by: Cl(a) = 
{x G : a ~ x } = Set of all conjugates of ‘a’ = {g-1ag : g G } 
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Remark. Since the conjugacy relation ‘~’ is an equivalence relation on G, so G is union of all conjugate 
classes and any two conjugate class are either disjoint or identical. Keeping this in mind, we can say that 

o(G) =  ( )
a

o Cl a , where the sum runs over element a which is taken one each from each conjugate 

class. Clearly, Cl (e) = {e} and Cl (a) = Cl (b) iff a ~ b. 

Result. If G is a finite group and a   G, then  ( )o Cl a  = 
 

( )
( )

o G
o N a

 

2.2.3. Class Equation. Let G be a finite group and Z(G) denote the centre of G. Then, the equation  

o(G) =    
( )( )    

( )a

o Go Z G
o N a

   

where ‘a’ ranges over each conjugate class containing more than one element, is called class-equation. 

Another forms of class equation. 

(i)  o(G) = 
 

( )  
( )a

o G
o N a , where the sum runs over ‘a’ taken one from each conjugate class. 

(ii) o(G) = o(Z(G)) + 
 ( )

( )  
( )a Z G

o G
o N a

 , where the sum runs over ‘a’ taken one from each conjugate 

class. 

(iii) o(G) = o(Z(G)) +
 ( )   

( )  
( )N a G

o G
o N a

 , where the sum runs over ‘a’ taken one from each conjugate 

class. 

(iv) o(G) = o(Z(G)) +
( )

  [  :  ( )]
a Z G

G N a

 , where the sum runs over ‘a’ taken one from each conjugate 

class. 

Results. 

1. If o(G) = pn for some prime p then Z(G)  {e} that is, Z(G) is non-trivial, that is,  ( ) 1o Z G  . 

2. If o(G) = p2 for some prime p, then G is abelian. 

3. A group of order p3 may not be abelian e.g. Q8 whose order is 23. 

4. If G is a non-abelian group of order p3 for some prime p, then  ( )o Z G  = p. 

5. If Z is the centre of a group G such that G Z  is cyclic, then show that G is abelian.  

2.3. Commutator. Let G be any multiplicative group. The commutator of two elements x and y of G is 
the element 1 1  .x y xy G    We denote it by [x, y]. 

2.3.1. Proposition. G is abelian iff [x, y] = e   x, y   G. 
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Proof. If G is abelian then  

 [x, y] = x 1y 1xy = x 1xy 1y = e.e = e. 

Conversely, let [x, y] = e   x, y   G. 

  x1y1xy = e  

  (yx)1. (xy) = e 

  xy = yx   x, y   G.    G is abelian. 

2.3.2. Proposition. a  Z(G) iff [a, x] = e   x  G. 

Proof. Let a   Z(G) = centre of G 

Then [a, x] = a1x1ax = a1x1xa = a1a = e [Since a   Z(G)]  

Conversely. [a, x] = e   x   G 

   a1x1ax = e   ax = xa     G   a   Z(G). 

2.3.3. Commutator Element. The element y of G is said to be a commutator element of G if   a, b   
G such that [a, b] = y that is, a1 b1ab = y. e.g. Identity element is always a commutator element.  

Let us find the commutator elements of S3. We know that  

S3 =   ,  (12) ,  (13) ,  (23) ,  (123) ,  (132)I  

Now,  [I, (12)] = I, Similarly [I, x] = I   x   S3. 
Now,  [(12), I] = I, [(12), (12)] = I 
 [(12),(13)] = (123),  [(12), (23)] = (132) 
 [(12), (123) = (132),  [(12), (132)] = (123) 
So, (123) and (132) are also commutator elements of S3. We can show that I, (123), and (132) are the 
only commutator elements of S3. 

2.3.4. Derived Subgroup. The subgroup of G generated by all the commutators of G is called the 
derived subgroup of G. We denote it by (G) and G  

that is,   (G) = G  = < [x, y] : x, y   G > 
For example, let G = S3, then 

(S3) = < [x, y] : x, y   S3 > = < I, (123), (132)> = {I, (123), (132)}. 

(G) is also known as first derived subgroup. 

2.3.5. Exercises. 

i) Derived subgroup of a group G is a normal subgroup of G, that is, (G)   G. 

ii) A group G is abelian if and only if G  = < e >. 



10 The Sylow Theorems 

 

2.3.6. nth Derived Subgroup. Let G be a group, for every non-negative integer n, define ( )nG  
inductively as follows: 

0G G ,  (  1) ( )n nG G  , 

the commutator subgroup of ( )nG . The  ( )nG  is called nth commutator subgroup or nth derived subgroup 
of G. 

 (  1) ( )n nG G   = [ ( )nG , ( )nG ] = < [x, y] : x, y   ( )nG  >. 

2.4. Sylow Theorems 

2.4.1. Sylow’s First Theorem. Let p be a prime number such that ( )mp o G , where m is a positive 
integer. Then G has a subgroup of order mp . 

Proof. We shall prove the Theorem by induction on ( )o G . 

If ( )o G  = 1, then Theorem is trivially true. 

As our induction hypothesis, we assume that Theorem is true for all groups of order less than order of G. 
In other words, we have assumed that if G is a group such that o(G) < ( )o G  and  

( )kp o G , for some integer k, then G has a subgroup of order kp . 

We shall prove the result for G. For this we consider two cases separately. 

Case I. If mp divides the order of a proper subgroup, say H, of G that is, ( )mp o H  and  

( )o H  < ( )o G . Then by induction hypothesis on H, we obtain that H (and hence G) has a subgroup of 
order mp . 

Case II. Let mp  does not divide the order of any proper subgroup of G that is, / ( )mp o H , for all proper 
subgroup H of G. 

We know that the class-equation for G is ( )o G  = 
( )

( )( ( ))  
( ( ))N a G

o Go Z G
o N a

   (1) 

If ( )N a G , then N(a) is a proper subgroup of G, and so by hypothesis of this case, 

     / ( ( ))mp o N a  

Now, ( )o G  = ( ) . ( ( ))
( ( ))
o G o N a

o N a
 

Given that ( )mp o G , and if / ( ( ))mp o N a  then by above expression, we obtain  

    ( )
( ( ))
o Gp

o N a
, whenever N(a)   G. 
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( )

( )
( ( ))N a G

o Gp
o N a

  

Also, ( )p o G , so 
( )

( ) ( )
( ( ))N a G

o Gp o G
o N a

 
 

 
    ( ( ))p o Z G  [By (1)] 

As Z(G) is abelian, so by Cauchy Theorem for finite abelian group, there exists an element ( )a e   

Z(G) such that pa e . Let K be the cyclic subgroup of G generated by a that is,  

K = < a > = 2 3{ , , ,..., }pa a a a  and o(K) = p. Now ( )a Z G  implies that K   ZG) and we know that a 
subgroup of Z(G) is always a normal subgroup of G and so KG and so G K  is well-defined. 

Now,    ( ) ( )( ) ( )
( )

o G o Go G K o G
o K p

    

So, we can apply the induction hypothesis on G K . 

Now, ( )mp o G     1 ( )m o Gp
p

  

     1 ( )mp o G K  

By induction hypothesis on G K  for the divisor 1mp  , G K  must have a subgroup, say, T of order 
1mp  , that is,  o(T) = 1mp  . 

Now, we know that every subgroup of G K  is of the form L K  where L is a subgroup of G containing 
K. So, we must have  

    T = L K , where L is a subgroup of G containing K. 

    o(T) = o( L K ) = ( )
( )

o L
o K

 

    o(L) = o(T).o(K) = 1mp  .p = mp  

Thus G has a subgroup L of order mp . 

Remark. Sylows first Theorem can also be stated in following ways:  

(i) If any power of prime divides the order of a group G, then G has a subgroup of order equal  

 to that power of prime. 

(ii) If ( )o G = kp q , where p is a prime number and q is a positive integer such that gcd(p,q)=1,  

 then G has subgroups of orders 2, ,..., kp p p . 
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Example of Sylow’s first Theorem. 

2.4.2. Example. Let G be a group such that ( )o G = 9000 . By Sylow first Theorem, find the order of 
subgroups which G certainly contains. 

Solution. First we do the prime factorization of 9000 and obtain  

( )o G  = 23 . 32 . 52 

Here, 2, 3 and 5 are prime numbers so by Sylow’s first Theorem, G contains the subgroups of order 21, 
22, 23, 31, 32, 51, 52 that is, 2, 4, 8, 3, 9, 5, 25. 

However, by Sylow’s first Theorem, nothing can be said about the existence of subgroups of order 6, 15, 
10 etc. as they are not powers of a prime. 

2.4.3. Sylow p-subgroup. Let p be a prime number such that kp  divides ( )o G  and 1kp   does not divide 
( )o G . Then a subgroup of order kp  is called a Sylow p-subgroup of G. 

-OR- 

If ( )o G  = kp q  where p is a prime number and gcd(p, q) = 1, then a subgroup of order kp  is called a 
Sylow p-subgroup of G. 

-OR- 

Sylow p -subgroup of a group G is a subgroup whose order is kp  where k is the largest power of p such 
that kp  divides ( )o G .  

-OR- 

A subgroup of G is called a Sylow p-subgroup if its order is equal to the maximum power of p occurring 
in the order of the group. 

2.4.4. Example. Find the order of different Sylow p–subgroups for G where  

(i) ( )o G  = 45       (ii) ( )o G  = 1125. 

Solution. (i) ( )o G  = 45 = 3251. 

Then, G has Sylow 3–subgroups and Sylow 5–subgroups. A sylow 3subgroup is that whose order is 32, 
that is, 9 and a sylow 5-subgroup is that whose order is 51 = 5. 

(ii) ( )o G  = 1125 = 3253. 

In this case, a sylow 3-subgroup is that whose order is 9 and a sylow 5-subgroup is that whose order is 
125. 

Note. By above example, it is clear that in different groups Sylow p-subgroup may have different orders 
for some fixed prime p. 

2.4.5. Example. If H is a Sylow p-subgroup of G, then prove that 1x Hx  is also a sylow p-subgroup of 
G for any x G . 
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Solution. Let ( )np o G  and 1 / ( )np o G .  

As H is a Sylow p -subgroup of G, we have ( ) no H p . 

Let H = 1 2 3{ , , ,..., }np
h h h h , then for any x G , we have  

1 1 1 1
1 2{  ,   ,...,  }np

x Hx x h x x h x x h x       (1) 

First we prove that 1x Hx  is a subgroup of G. For this let 1 1
1 2  and  x h x x h x   be any two arbitrary 

element. 

Then 1 1 1
1 2( ) ( )x h x x h x    = 1 1 1 1 1

1 2 ( )x h x x h x      

         = 1 1 1
1 2x h h x x Hx    1

1 2Since   as  is a subgrouph h H H    

Thus, 1x Hx  is a subgroup. 

Secondly, we prove that 1( ) ( )o x Hx o H  . 

For this it is sufficient to prove that all elements in (1) are distinct. 

Let if, possible 1 1
1 2 1 2  ,  where  x h x x h x h h    

     1 1 1 1
1 2xx h xx xx h xx     

     1 2h h , which is a contradiction. 

Hence, 1( ) ( )o x Hx o H  , that is, 1( ) no x Hx p  . 

Thus, 1x Hx  is a Sylow p-subgroup of G. 

2.4.6. p group. Let p be a prime number. A group G is said to be a p – group if order of every element of 
G is some power of p. For example, 

8 {1, 1, , , , , , }Q i i j j k k      

The group of quaternions is a 2–group because 
0(1) 2o  , 1( 1) 2o   , 2( , , , , , ) 2o i i j j k k    , 

that is, order of every element of Q8 is a some power of 2. 

2.4.7. Theorem. A finite group G is a p-group iff ( )o G  = pn for some integer n. 

Proof. Suppose G is a p-group. We shall prove that ( )o G  = np  for some integer 1n  . 

For this, it is sufficient to prove that p is the only prime dividing ( )o G . 

Let, if possible, ( )q p be any other prime such that ( )q o G . By Cauchy Theorem, there exists an 
element ( )a e G   such that ( )o a q  
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Since a G  and G is a p-group, so ( ) ro a p  for some r   1. Thus rp q  

  p q , which is a contradiction since a prime can never divide other prime. 

Hence p is the only prime dividing ( )o G , so ( )o G  = pn for some n. 

Conversely, Suppose ( )o G  = pn. Let a G  be any element, then ( ) ( )o a o G  

  ( ) no a p     ( ) ro a p  for some r. 

Thus order of every element of G is some power of p. Hence G is a p-group. 

Remark. Now we introduce the concept of Double Cosets which will be very useful in proving the 
Sylow’s second and third Theorem. 

2.4.8. Double Coset. Let H and K be two subgroups of a group G and x G  be any element. Then the 
set  

  H x K = {   :     ,  }hxk h H k K   is called a double coset. 

2.4.9. Double Coset Decomposition. If H and K are two subgroups of a group G then prove that 

(i) any two double cosets are either disjoint or identical 

(ii) G is the union of all distinct double cosets that is, G =   
x G

H x K

  where union runs over x taken one 

from each double coset. 

Proof. We define a relation ~ for any two elements x and y of G as x ~ y iff x = hyk for some 
  and  h H k K  . 

First we prove that this relation is an equivalence relation. 

(i) Reflexivity: Clearly x ~ x as x = e x e, where eH, eK. 

(ii) Symmetry: Let x ~ y   x = h y k for some hH, kK 

        1 1 1 1      h x k h h y k k     

        1 1  y h x k   where 1 1  ,  h H k K    

        ~y x . 

(iii) Transitivity: Let ~x y  and ~y z  

    x hyk  and y h zk   for some ,    and  ,h h H k k K    

    x = hh zk k   

Clearly hh H and k k K  , as H and K are subgroups and so ~x z . 

Hence ~ is an equivalence relation of G, so this relation partitions the group G into equivalence classes 
and so we can write 
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G = ( )
x G

cl x

   (1) 

where union runs over x taken one from each conjugate class. 

Then, 

      ( )cl x = {   :   ~ }y G y x  

     = {   :    for some   , }y G y hxk h H k K     

     = {   :      ,  }hxk h H k K  = H x K 

 ( )cl x  = H x K  (2) 

Thus equivalence class of any element comes out to be a double coset. Also we know that any two 
equivalence classes are either disjoint or identical. Thus we obtain that any two double cosets are either 
disjoint or identical, which proves (i). 

Using (2) in (1), we obtain 

G =   
x G

H x K

  

where union runs over x taken one from each double coset which proves (ii). 

This is called double coset decomposition of G by H and K. 

2.4.10. Lemma. Let H and K be finite subgroups of a group G and xG then  

   (   )o H x K  = 1
( ) ( )

(   )
o H o K

o H x K x
. 

Proof. We define a mapping   1  :        H x K H x K x   by setting  

     1( )hxk hxkx   for hH and kK. 

We prove that  is well-defined, one-one and onto. 

(i)  is well-defined: Let 1 1 2 2h xk h xk  

    1 1
1 1 2 2h xk x h xk x   

    1 1 2 2( ) ( )h xk h xk   

So,  is well-defined. 

(ii)  is one-one. Let  1 1 2 2( ) ( )h xk h xk   

    1 1
1 1 2 2h xk x h xk x   

     1 1 2 2h xk h xk  
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So,  is one-one. 

(iii)  is onto. Let 1 1hxkx HxKx  be any element then clearly hxk HxK  and  
1( )hxk hxkx     hxk  is pre-image of 1hxkx  under . 

So,  is onto. 

Hence, there exists a one-to-one correspondence between H x K and 1 HxK x  and so their orders must 
be same that is, 

1( ) ( )o HxK o HxKx      (1) 

Now we know that if K is a subgroup of G then 1xKx  is also a subgroup of G of the same order, that is,  
  o(K) = 1( )o xKx . 

Also, we know a result that if A and B are two finite subgroups of G, then  

     ( ) ( )( )
( )

o A o Bo AB
o A B




  

Putting A = H and B = 1xKx  in above, we obtain  

     
1

1
1

( ) ( )( )
( )

o H o xKxo HxKx
o H xKx







 

      1
1

( ) ( )( )
( )
o H o Ko HxKx

o H xKx





 1[Since ( ) ( )]o K o xKx  (2) 

By (1) and (2), we obtain 

     1
( ) ( )( )

( )
o H o Ko HxK

o H xKx


 

2.4.11. Sylow’s Second Theorem. Any two Sylow p-subgroups of a finite group G are conjugates in G. 

Proof. Let H and K be two Sylow p-subgroups of G. Let n be the highest power of p such that ( )np o G  
that is, 

1 / ( )np o G       (1) 

Then, ( ) ( ) no H o K p   

We have to show that H and K are conjugate in G that is, H = 1xKx  for some xG 

Let, if possible this is false that is, 1H xKx  for all xG. 

  1H xKx  is a subgroup of H which is properly contained in H 

that is,    1H xKx   H      (2) 
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Now, by Lagrange’s Theorem,  

  1( ) ( ) no H xKx o H p   

    1( )o H xKx = pm for some m n .  

But in view of (2) clearly m n , so  1( )o H xKx = pm, where m < n. 

By above Lemma, we have  

 
2

1

1 1 1 1

( ) ( ) .( )
( )

.

n n
n m

m

n n m n n m

o H o K p po HxK p
o H xKx p
p p p




      

  


 

  

    1np   divides ( )o HxK  

    1np   divides ( )
x G

o HxK

     (3) 

Now, by double coset decomposition, we know that  

  G =   
x G

H x K

 , where H x K are mutually disjoint. 

    o(G) = ( )
x G

o HxK

      (4) 

By (3) and (4), we have 1np   divides o(G), which is a contradiction to (1). 

Hence H = 1xKx  for some xG that is, H and K are conjugates in G. 

2.4.12. Lemma. Let P be a Sylow p -subgroup of a group G, then the number pn  of Sylow p-subgroups 

of G is equal to ( )
( ( ))
o G

o N P
. 

Proof. We know that  ( )( ( ))
( ( ))
o Go cl P

o N P
       (1)   

Now, ( )cl P  contains all subgroups which are conjugate to P. 

But by Sylow second Theorem, all sylow p-subgroups are conjugate to each other and hence ( )cl P  
contains all Sylow p-subgroups of G. 

Hence, number of Sylow p-subgroups = pn  = ( ( ))o cl P   (2) 

By (1) and (2),   pn = ( )
( ( ))
o G

o N P
. 

2.4.13. Sylow’s Third Theorem. The number pn  of Sylow p-subgroups of a finite group G is given by 

pn  = 1 + kp such that 1 ( )kp o G , and k is a non-negative integer.  
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Proof. Let P be a Sylow p-subgroup of G.  

Let n be the highest power of p such that ( )np o G  that is, 1 / ( )np o G . 

By double coset decomposition of G, we know that 

  G =   
x G

H x K

 , where union runs over x taken one from each double coset. 

  o(G) = ( )
x G

o HxK

  where sum runs over x taken one from each double coset. 

Taking H = K = P in above, we get  

  o(G) = ( )
x G

o PxP

  

   o(G) =
( ) ( )

( ) ( )
x N P x N P

o PxP o PxP
 

     (1) 

We take up two sums in (1) one by one. 

If x   N(P) then 1xPx  = P    xP Px  

       PxP PPx  

       PxP Px    Since  is a subgroup , so   =  P P P P  

      
( ) ( )

   
x N P x N P

P x P P x
 

    (2) 

Now P is a subgroup of N(P) and so Px is a right coset of P in N(P). Further we know that union of all 
distinct right cosets of a subgroup is equal to the group, so we get 

    
( )

 ( )
x N P

P x N P


  

Using this in (2), we get  

    
( )

  ( )
x N P

P x P N P


   

     
( )

( )
x N P

o PxP

  = ( ( ))o N P   (3) 

Again, if ( )x N P  then 1xPx P   

  1P xPx  is a subgroup of P properly contained in P, 

that is,     1( ) ( ) no P xPx o P p    

Also by Lagrange’s Theorem    

     1( ) ( ) no P xPx o P p   
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      1( ) mo P xPx p   with m < n. 

Now we know that,  

     2
1

( ) ( ) .( )
( )

n n
n m

m

o P o P p po PxP p
o P xPx p


  


 

      = 1 1n n mp     = 1 1.n n mp p    

    1np   divides o(P x P) whenever ( )x N P   

that is,   1

( )
( )n

x N P
p o PxP


  

   
( )

( )
x N P

o PxP

 = 1np   t for some integer t  (4) 

Using (3) and (4) in (1), we obtain  

   o(G) = o(N(P)) + 1np   t 

    ( )
( ( ))
o G

o N P
 = 1 +

1

( ( ))

np t
o N P



   (5) 

As N(P) is a subgroup of G, by Lagrange’s Theorem, o(N(P)) divides o(G) and so ( )
( ( ))
o G

o N P
 

is an integer. 

So, by (5), we obtain that 
1

( ( ))

np t
o N P



 is an integer. 

Now, P is a subgroup of N(P), so by Lagrange’s Theorem 

  ( ) ( ( ))o P o N P      ( ( ))np o N P  

     ( ( )) no N P p r  for some integer r. 

Thus, we obtain that 
1 1

( ( ))

n n

n

p t p t tp
o N P p r r

 

   is an integer. 

     t
r

 is an integer, say k    
1

( ( ))

np t
o N P



 = kp 

Using this in (5), we have  

   ( )
( ( ))
o G

o N P
 = 1 + kp 

By above Lemma, the number pn  of Sylow p-subgroups is given by pn = ( )
( ( ))
o G

o N P
. 



20 The Sylow Theorems 

 

Hence, pn = ( )
( ( ))
o G

o N P
= 1 + kp 

Finally, o(G) = o(N(P)).(1 + kp) implies that 1 ( )kp o G  

Thus number of Sylow p-subgroups is 1+ kp such that 1 ( )kp o G . 

2.4.14. Corollary. Show that a Sylow p-subgroup of a finite group G is unique iff it is normal. 

Proof. Condition is necessary: 

Suppose H be a unique Sylow p-subgroup of G. Let ( )np o G  and 1 / ( )np o G , then  

Clearly, o(H) = pn 

Let x G  be any arbitrary element, then we know that 1x Hx  is also a Sylow p-subgroup. 

Since H is the only Sylow p-subgroup of G, therefore  

     1    for all  x Hx H x G    

     Hx xH  for all x G  

   H is a normal subgroup of G. 

Condition is sufficient : 

Let H be a Sylow p-subgroup of G such that HG. We shall prove that H is unique. Suppose K be any 
other Sylow p -subgroup of G. Then, by Sylow second Theorem, H and K must be conjugate in G that is, 
 K = 1x Hx  for some x G  

     K = 1x xH     [Since HG] 

     K = H 

Hence H is unique Sylow p-subgroup of G. 

2.4.15. Simple Group. A simple group is one having no proper normal subgroup. 

Remark. To show that a finite group G of certain order is not simple, obtain a unique Sylow p -
subgroup G for some prime p. Then, it becomes normal and obviously H is proper, which shows that G 
is not simple. 

2.4.16. Example. Show that a group of order 28 is not simple.  

     -OR- 

Let ( )o G  = 28, then show that group G has a normal subgroup of order 7. 

Solution. We have ( )o G  = 28 = 2271. By Sylow first Theorem, G has Sylow 2 – subgroups each of 
order 4 and Sylow 7 – subgroups each of order 7. 

By Sylow third Theorem, the number n7 of Sylow 7 – subgroups is given by 1 + 7k such that  
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   1 7 ( )k o G    1 7 28k  

      21 7 2 .7k  

      1 7 4k   [Since (1 + 7k, 7) = 1] 

       k = 0 

Thus, 7n = 1 that is, there is unique Sylow 7 -subgroup say H and o(H) = 7 

But we know that “a Sylow p -subgroup is unique iff it is normal”. 

Thus H is a normal subgroup of order 7. Obviously H is proper. Hence G is not simple. 

2.4.17. Exercise. 

1. Let G be a group of order 52.7.11, then G has how many 

(i) Sylow 5–subgroups 

(ii) Sylow 7–subgroups 

(iii) Sylow 11–subgroups. 

Check whether G is simple or not. 

2. Show that a group of order 40 is not simple. 

     -OR- 

Show that a group of order 40 has a normal subgroup of order 5. 

3. Show that a group of order 20499 is not simple. 

     -OR- 

Show that a group of order 20499 has a normal subgroup of order 11. 

4. Show that a group of order 56 is not simple. 

2.4.18. Proposition. Let G be a finite group such that ( )o G  = np , where p is a prime. Prove that any 
subgroup of order 1np   is a normal subgroup of G. 

Proof. We shall prove the result by induction on n.  

For n = 1, G is a group of order p and the only subgroup of order 1np   that is, of order  

 1 1 0 1p p    is {e}. The identity subgroup {e} is obviously a normal subgroup of G. Thus  

the result is true for n = 1. 

As our induction hypothesis, we assume that result is true for all groups of order mp , where m < n. 

Let H be a subgroup of G of order 1np  . We shall prove that H is normal in G. 

Now, ( )H N H G and so by Lagrange’s Theorem,  
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  ( ) ( ( ))          and       ( ( )) ( )o H o N H o N H o G  

that is,  1 ( ( ))           and       ( ( ))n np o N H o N H p  

  1( ( ))  or n no N H p p  

If o(N(H)) = pn, then ( ( )) ( )o N H o G    N(H) = G 

  H is normal in G, which is what we want to prove. 

Now, we finish our proof by showing that o(N(H)) = 1np   is impossible. 

Let, if possible, ( ( ))o N H  = 1np  , then as ( )o H  = 1np   and ( )H N H , we get  

   H = N(H)      (1) 

Now, ( )o G  = pn, we know by class equation, that ( ( )) 1o Z G    (2) 

By Lagrange’s Theorem, ( ( )) ( ) no Z G o G p    o(Z(G)) = ps, 0 s n   

But if s = 0, then o(Z(G)) = 1, which is a contradiction by (1). 

Hence,  o(Z(G)) = ps, s > 0   ( ( ))p o Z G  

So, by Cauchy Theorem for finite groups, there exists an element ( )a e ( )Z G  such that ( )o a p . 

Let K be the cyclic subgroup of G generated by ‘a’ that is,  

      K = < a > = 2 3{ , , ,........., }pa a a a e  

As ‘a’ belongs to centre, every element x G  commutes with a and all its powers, so 

       for all Kx xK x G   

   K is a normal subgroup of G.  

Hence G K  is well-defined and  

  1( )( )
( )

n
no G po G K p

o K p
   , where 1n n   

Also, 
1

2( )( )
( )

n
no H po H K p

o K p


    

So, by induction hypothesis, H K  must be a normal subgroup of G K  

    H is a normal subgroup of G    N(H) = G  (3) 

By (1) and (3) we obtain, H = G, which is absurd. 

Hence o(H) = 1np   is not possible. 

2.4.19. Example. Show that no group of order 108 is simple. 
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-OR- 

Let G be a group of order 108. Show that G has a normal subgroup of order 27 or 9. 

Solution. We have ( )o G  = 108 = 22.33. By Sylow third Theorem, the number 3n  of Sylow 3–subgroups 
is given by 1 + 3k such that  

 2 31 3 ( ) 2 .3k o G      1 3 4k  3[Since (1 3 ,3 ) 1]k   

       k = 0 or 1 

      3n = 1 + 3.0 or 1 + 3.1 

      3n = 1 or 4 

We consider the two cases separately. 

Case (i). 3n  = 1, that is, G has a unique Sylow 3 -subgroup, say H. Since H is unique, it must be normal 
and o(H) = 33 = 27. Thus G has a normal subgroup of order 27 in this case and hence G is not simple. 

Case (ii). 3n  = 4, that is, G has four Sylow 3 – subgroups each of order 27. Let H and K be any two 
distinct sylow 3 – subgroups. We claim that ( ) 9o H K   and H K  is a normal subgroup of G.  

Clearly, H K H  , and so by Lagrange’s Theorem. 

    ( ) ( ) 27o H K o H   

  ( )o H K  = 1 or 3 or 9 or 27. 

If ( )o H K  = 27 then since o(H) = o(K) = 27, we obtain H = K, which is a contradiction. Hence 
( ) 27o H K  . 

If ( )o H K  = 1 or 3 then ( )o H K  = ( ) ( ) 27.27 108 ( )
( ) 1  3

o H o K o G
o H K or

  


, which is not possible. 

Hence ( )o H K   1, 3 and so ( )o H K  = 9. 

We now show that H K  is normal in G. For this we shall prove that ( )N H K  = G.  

Now, we know a that, if o(H) = 1np   and o(G) = np  then H is a normal subgroup of G. 

Using this, we conclude that H K  is a normal subgroup of both H and K as ( )o H K  = 32 and o(H) 
= o(K) = 33. 

Let x H  be any element, then  

    ( ) ( )H K x x H K     [Since ( )  ]H K H   

     ( )x N H K  , normalizer of H K . 

     ( )H N H K   
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Similarly,  ( )K N H K     ( )HK N H K   

     ( ) ( )o N H K o HK  = ( ). ( )
( )

o H o K
o H K

 = 27.27 81
9

  

     ( )   81o N H K      (1) 

On the other hand, ( )N H K  is a subgroup of G so by Lagrange’s Theorem  

      ( ) ( )o N H K o G , 

that is,    ( ) 108o N H K     (2) 

Both (1) and (2) are possible only when  

    ( )o N H K  = 108 = o(G) 

     ( )o N H K  = o(G) 

     ( )N H K  = G 

     H K  is normal in G.  [Since N(H) = G iff   H G ] 

Hence G is not simple. 

2.4.20. Theorem. Let ( )o G  = pq, where p and q are distinct primes, p < q and / 1p q  , then show that 
G is cyclic. 

Proof. By Sylow third Theorem, the number pn  of Sylow p-subgroups is given by 1 + kp such that 

1 ( )kp o G pq   

  1     [Since (1 , ) = 1]kp q kp p   

  1+ kp = 1 or 1 + kp = q  [Since q is a prime] 

If 1 + kp = q, then 1kp q   

  1p q  , which is a contradiction. 

Hence 1 1pn kp   . Thus G has a unique Sylow p-subgroup, say, H of order p. Also since H is unique, 
it must be normal. Thus we obtained  

  ( )   and     o H p H G      (1) 

Again, by Sylow third Theorem, the number qn  of Sylow q-subgroups is given by 1 k q  such that 

1 ( )k q o G pq      1 k q p   [Since (1  , ) = 1]k q q  

      1 1  or  1k q k q p      

If 1 k q p   then we get q p , which is a contradiction. 
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Hence 1 1qn k q   . Thus G has a unique Sylow q-subgroup, say, K of order q. Also since K is unique 
it must be normal. Thus we obtained  

  ( )   and     o K q K G      (2) 

Now, we know that a group of prime order is always cyclic and here H and K both are of prime orders, 
so they must be cyclic. 

Let H = < a > and K = < b > then o(H) = o(a) and o(K) = o(b) (3) 

Using (1) and (2) in (3), we get  

  o(a) = p and o(b) = q     (4) 

Now, we prove that H K  = {e}. Let x H K   be any element.  

Then    and  x H x K      ( ) ( )    and   ( ) ( )o x o H o x o K  

      ( )    and   ( )o x p o x q  

      ( ) gcd( , )o x p q  

      ( ) 1o x   

      x = e for all x H K   

      H K  = {e}   (5) 

Now, we prove that ab = ba. 

For this consider the element 1 1a b ab  . We see that  

 1 1 1 1( )a b ab a b ab H     , 

because H G , so that 1b ab H   and also 1a H  . 

Again, 1 1a b ab   = 1 1( )a b a b K   , because K G , so that 1 1a b a K    and also b K . 

Hence, we get   1 1a b ab     HK 

    1 1a b ab   = e   [By (5)] 

    1 1 .baa b ab ba e    

    ab ba  

Lastly, by (3), we see that gcd( ( ), ( )) gcd( , ) 1o a o b p q   

We know that, if ,a b G  such that ab = ba and  ( ), ( )o a o b  = 1 then ( ) ( ). ( )o ab o a o b . 

Therefore,  ( ) ( ) ( ) (G)o ab o a o b pq o    

   G contains an element ab of order pq 

   G = < ab > 



26 The Sylow Theorems 

 

   G is cyclic. 

Remark. Due to the above result, we can say that groups of order 15, 33, 35, 65, 51 etc. are cyclic.  

2.4.21. Exercise. 

1. Show that a group of order 15 always cyclic. 

2. Let G be a group of order 231, then show that  

(i) G is not simple 

(ii) Sylow 11 -subgroup of G is contained in the centre of G. 

2.4.22. Theorem. Let P be a Sylow p-subgroup of G and let ( )x N P  be an element such that 
( ) ro x p . Then show that x P . 

Proof. Since P is given to be a Sylow p-subgroup of G and let  

    ( )np o G  but 1 / ( )np o G    (1) 

Then, clearly    o(P) = pn. 

We know that   ( )P N P , so ( )N P P  is well-defined. 

As ( )x N P ,  ( )Px N P P  and ( ) . .
r rp pPx P x P e        [Since ( ) ]ro x p  

   ( )
rpPx = P = Identity of ( )N P P  

   ( ) ro Px p    ( ) so Px p  for some 0s   

If s = 0, then 0( ) 1so Px p p        Px P  

    x P , which is required to prove. 

Now we finish the proof by showing that s > 0 is impossible. 

Let, if possible, s > 0 and let H  be the cyclic subgroup of ( )N P P  generated by Px that is,  

  H Px    then ( ) ( )  so H o Px p    (2) 

Since H  is a subgroup of ( )N P P , it must be of the form H  = H P  where H is a subgroup of N(P) 
containing P. 

Now,    o( H ) = ps     [By (2)] 

   ( ) so H P p  

   ( )
( )

so H p
o P

    ( )  ,  0n so H p s   

As H is a subgroup of N(P) and N(P) is a subgroup of G, so H is a subgroup of G and by Lagrange’s 
Theorem, ( ) ( )o H o G  
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   ( )n sp o G , which is a contradiction by (1), as s > 0. 

Hence s > 0 is not possible and in case s = 0, we have already shown that xP. 

2.5.Structure of Finite Abelian Groups. 

If a group is direct product of some of its subgroups, then the structure of the group can be determined 
by determining the structures of subgroups appearing in the direct product. This simplifies our work as 
determination of structure of a big group is broken into determination of structures of comparatively 
smaller groups. 

Let us call the subgroups appearing in the direct product as “building blocks”. Now the procedure will 
be more simple if these building blocks are taken to be cyclic subgroups since cyclic groups are always 
easy to deal with. 

Now a natural question arise “Is it always possible to write a group as the direct product of its cyclic 
subgroups”. 

The answer is no, in general. However, luckily, it is possible for finite abelian groups, due to 
Fundamental Structure Theorem for finite abelian groups. 

Before the formal statement of this Theorem, let us study another Theorem in this regard. 

2.5.1. Theorem. Prove that a finite abelian group is direct product of its Sylow subgroups. 

Proof. Let G be a finite abelian group and ( )o G  = 1 2
1 2 ... rn n n

rp p p , where 1 2, ,..., rp p p  are distinct primes 
and 1in   for all i. Since internal direct product is always isomorphic to external direct product, we shall 
prove that G is internal direct product of its Sylow subgroups.  

Let 1 2, ,..., rH H H  be the Sylow subgroups of G such that  

  1 2
1 1 2 2( )  ,   ( )  ,...,  ( ) rn n n

r ro H p o H p o H p    

To show that G is internal direct product of 1 2, ,..., rH H H  we have to prove following three things. 

(i) Each Hi is normal in G. 

(ii) 1 2 1 1... ... { }i i i rH H H H H H e    for any i. 

(iii) G = 1 2... rH H H  

Let us prove all these one by one. 

(i) Since G is abelian, so its every subgroup is normal. Hence each Hi is normal in G. 

(ii) Let 1 2 1 1... ...i i i rx H H H H H H    be any arbitrary element. 

Then ix H  and 1 2 1 1... ...i i rx H H H H H   

   1 2 1 1... ...i i rx h h h h h   where   for all  j jh H j i   
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As   and ( ) jn
j j j jh H o H p  , so ( )

n j
jp

jh = e for j i    (1) 

Now, let 1 11 2
1 2 1 1... ...i i rn nn n n

i i rt p p p p p 
  , then for j i , we have  

 
1 11 2

1 2 1 1... ...( ) ( )
n nn n ni i r

i i rp p p p pt
j jh h

 
  =  

 remaining factorsn j
jp

jh 
  

 Since   appears in jn
jp t 

   

          =  remaining factors[ ]e   = e. 

Thus,   1 2 1 1... ...t t t t
i i rh h h h h e              (2) 

Now,    1 2 1 1... ... tt
i i rx h h h h h   

      = 1 2 1 1... ...t t t t t
i i rh h h h h   

      = e. 

   ( )o x t     1 2 1 1
1 2 1 1( ) ... ...i i rn nn n n

i i ro x p p p p p 
    (3) 

Since ix H    ( ) ( )io x o H   

   ( ) in
io x p    ( ) ,0im

i i io x p m n        (4) 

Putting value of (4) in (3), we get  

 1 2 1 1
1 2 1 1... ...i i i rn nn n nm

i i i rp p p p p p 
     0im  , 

since pi does not appear on R.H.S.. So by (4), we have 0( ) 1im
i io x p p      x = e 

Thus, 1 2 1 1... ... { }i i i rH H H H H H e    for any i, which proves (ii). 

(iii) We know that a result that 

If A and B are two finite subgroups then ( ) ( )( )
( )

o A o Bo AB
o A B




   (5) 

Using this result for 1 2 3   and   ... rA H B H H H  , we get  

   1 2 3
1 2

1 2 3

( ) ( ... )( ... )
( ... )

r
r

r

o H o H H Ho H H H
o H H H H




     (6) 

Taking i = 1 in (ii), proved above, we have  

  1 2 3... { }rH H H H e      1 2 3( ... ) 1ro H H H H   

Using this in (6) 

 1 2 3 4
1 2 1 2 3

2 3 4

( ) ( ) ( ... )( ... ) ( ) ( ... )
( ... )

r
r r

r

o H o H o H H Ho H H H o H o H H H
o H H H H

 


  (7) 

Now, 2 3 4 2 1 3 4... ... { }r rH H H H H H H H H e        [By (ii) for i = 2] 

   2 3 4... { }rH H H H e      2 3 4( ... ) 1ro H H H H   
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Using this in (7), we get  

  1 2 1 2 3 4( ... ) ( ). ( ) ( ... )r ro H H H o H o H o H H H  

Continuing in this way, we obtain 

  1 2
1 2 1 2 1 2( ... ) ( ). ( )... ( ) .......... ( )rn n n

r r ro H H H o H o H o H p p p O G    

   G = 1 2....... rH H H , which proves (iii). 

Thus G is the internal direct product of its Sylow subgroups. 

2.6. SURVEY OF GROUPS. 

In our previous work we have obtained a complete description of number and nature of a finite abelian 
group. Unfortunately, there is no such general result for finite non-abelian groups. The Sylow Theorems 
and Cauchy Theorem (which is itself is a particular case of Sylow first Theorem) are a powerful tool in 
finding the number and nature of finite non-abelian groups. 
However, to keep our study within the scope of the book, we shall study the groups of orders 6 and 8 
only. 
2.6.1. Example. Find all non-abelian groups of order 6. 

Solution. Let G be a non-abelian group such that ( )o G = 6. Now 3 and 2 are prime numbers dividing 
( )o G  so by Cauchy Theorem, there exist two non-identity element a and b in G such that 
( ) 3  and  ( ) 2o a o b  . 

Let H = < a > be the cyclic subgroup of G generated by a that is,  

  H = 2{ , , }e a a  and ( )o H  = 3. 

Now,  index of H in G = ( ) 6 2
( ) 3

o G
o H

   

Since every subgroup of index 2 is normal, H is normal in G.  

If b H , then ( ) ( )o b o H    2 3 , which is a contradiction. Hence b H  

As index of H in G is 2, so there are two distinct right coset of H in G and clearly these are H and Hb. 
Then  G = H   Hb = 2 2{ , , , , , }e a a b ab a b . 

Since   H G , 1b ab H   = 2{ , , }e a a    1b ab e   or a or a2  

If 1b ab e  , then 1 1 1bb abb beb    that is, a = e, a contradiction. 

If 1b ab a  , then ab = ba   G is abelian, a contradiction. 

So, 1 2 1b ab a a   . 

Hence there is only one non-abelian group of order 6 given by  

 2 2  { ,  ,  ,  ,  ,  }G e a a b ab a b  where 3 2 1 1  and  a b e b ab a     

2.6.2. Exercise. 
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1. Find all non-isomorphic abelian groups of order 6. 

2. Find all non-isomorphic groups of order 6. 

3. Find all non-isomorphic non-abelian groups of order 8. 

4. Find all non-isomorphic groups of order 8. 

2.7. Check Your Progress. 

1. For any group G, G G  is always abelian. 

2. If G is a group, then ( ) (  1)n nG G   is always abelian.  

3. Show that a group of order 30 is not simple. 

2.8. Summary. 

In this chapter, we discussed about commutator elements, Sylow’s theorems which is an important part 
of group theory. Also observed that for a finite group and a prime p dividing its order, if pm is the largest 
power of p dividing order of group, then the group must have subgroups of orders p0, p1, . . ., pm. 
However, we have no idea about the number of subgroups of orders pi for i = 1, 2, …, m – 1, but for i = 
0, it is 1 and for i = m, it can be decided by Sylow’s third theorem. 
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3 
SUBNORMAL SERIES 

Structure 

3.1.  Introduction. 

3.2. Subnormal Series 

3.3.  Solvable Group 

3.4.  p-group 

3.5.  Commutator Element 

3.6.  Lower Central Series 

3.7.  Upper Central Series 

3.8.  Check Your Progress 

3.9. Summary 

3.10. Exercise 

3.1. Introduction. This chapter contains definition of subnormal series and its examples. Definition and 
important properties related to that of a solvable group are discussed. One important result in this 
direction is that Sn is not solvable for n > 4. Also it is proved that every p-group is solvable.  

3.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Every subgroup of a solvable group is solvable. 

(ii) Every factor group of a solvable group is solvable. 

(iii) Converse result of these results. 

(iv) Every p-group is solvable. 

(v) Sn is not solvable for n > 4. 

(vi) A group is solvable iff nth derived subgroup is solvable. 

3.1.2. Keywords. Subnormal Series, Solvable Groups, Abelian Groups, Order of Group, Quotient 
Groups. 
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3.2. Subnormal Series. A sequence of subgroups 

0 1 2 ... rG G G G G e        

of a group G is called a subnormal series of G if 1   i iG G   for 0 1.i r    

3.2.1. Refinement of a Series. Let G be a group and  

0 1 2 ... rG G G G G e        

be a subnormal series for G. A subnormal series 
' ' ' '
0 1 2 ... sG G G G G e        

is called a refinement of the former series if    ' ' ' '
0 1 2 0 1 2, , ,..., , , ,...,r sG G G G G G G G . 

The refinement is said to be a proper refinement if    ' ' ' '
0 1 2 0 1 2, , ,..., , , ,...,r sG G G G G G G G . For 

example, let G = S3, then 0 1G G G I     is a subnormal series for G. Now consider the series 

0 1 3 2G G G A G I      . 

We note that 3 3  A S  and 3  I A   . So, this series is also a subnormal series for G. Also, 

   3 3 3, , ,S I S A I     . 

Hence this series is a proper refinement of the last one. 

3.2.2. Length of a Series.Consider a subnormal series  

0 1 2 ... rG G G G G e          (1) 

Then, it is possible for some i, Gi = Gi+1 in (1). The number of distinct members of (1) different from (1) 
is called the length of the series (1). 

Due to this definition, the length of series (1) is r, if all Gi’s are distinct. 

The subnormal series (1) is said to be redundant if for some i = 0,1,2,…,r-1; Gi = Gi+1, otherwise it is 
said to be irredundant. One can always construct an irredundant series from a redundant one by deleting 
Gi whenever for some i, Gi+1 = Gi. 

So, if (1) is irredundant, then length of (1) is r. 

3.2.3. Factors of a Series. Let G be a group and 0 1 2 ... rG G G G G e        is a subnormal 

series for G. Then, 
1

i

i

G
G 

 is called factor group or quotient factor group of the series. 

3.3. Solvable Group. A group G is said to be solvable if there exists a sequence of subgroups 

0 1 2 ... rG G G G G e        such that 
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(i) 1   ,  0 1i iG G i r      

(ii) 
1

i

i

G
G 

is abelian, 0 1i r   . 

3.3.1. Example. Every abelian group G is solvable. The series G e   is a subnormal series, that is 

  e G    and its only factor group is G e  , which being isomorphic to G, is abelian. 

3.3.2. Results. (i) A subset H of a group G is a subgroup iff -1 Hab   for all , Ha b . 

(ii) A subgroup H of a group G is normal iff 1g hg H   for every , .h H g G   
(iii) Let G be a group and H be a normal subgroup of G, then the set G/H (G mod H) of all cosets of H in 
G is a subgroup w.r.t. multiplication of cosets. It is called quotient group or factor group of G by H. If 

,a b G , then HaHb = Hab. The identity element of G/H is H. 

(iv) If  ,.G  and  ,*G  are two groups. A mapping :f G G  is called a homomorphism, if 

     . *f x y f x f y  for all ,x y G . Also, it is called isomorphism, if it is one – one and onto. We 

write as G G  

(v) Fundamental Theorem of Homomorphism. If G  is homomorphic image of G  under f (that is, 

f  is onto) , then ker
G Gf  . If f  is not onto then  ker

G f Gf  . 

3.3.3. Proposition. Every subgroup of a solvable group is solvable. 

Proof. Let G be a solvable group and let 

  0 1 2 ... rG G G G G e        

be a solvable series for G such that 

(i) 1   ,  0 1i iG G i r      

(ii) 
1

i

i

G
G 

 is abelian, 0 1i r   . 

Let H be any subgroup of G and let ,  0i iH H G i r    , then 

  0 1 2 ... rH H H H H e               ---(1) 

is a sequence of subgroups of H. For it, since ie H  for 0 i r  . Therefore, iH   for all 0 i r  . 

Let , i ia b H H G    which implies ,  and , ia b H a b G  . 
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Since H and Gi are subgroups, therefore, 1 1 and iab H ab G    and so 1
i iab H G H    . Hence 

Hi is a subgroup of H, 0 i r  . 

Now, we claim that the series (1) is a solvable series for H. 

First we prove that 1   ,  0 1i iH H i r     . 

Let 1  and i ih H k H  . Then 1 1 1  and i i ih H H G h H h G        . 

Similarly,   and i i ik H H G k H k G      . 

Since 1   ,i iG G  thus 1
1 1,  i i ih G k G k hk G
      and 1, .h k H k hk H    Therefore, 

1
1 1i ik hk H G H
     and so 1   ,  0 1i iH H i r     . 

Now, we shall prove that 
1
,  0 1i

i

H i rH 
   , are abelian. 

To prove this we define a mapping 
1

: i
i

i

Gf H G 
  by considering 

  1if x xG  , 

where i ix H H G   . 

We shall prove that f  is well defined and a group homomorphism. 

Let , ix y H  such that 1
1ix y xy e G
    . 

So,    1
1 1 1 1 1 1 .i i i i i iG xy G G x G y xG yG f x f y
             

Therefore, f  is a well-defined mapping. 

Again, let , ix y H , then 

     1 1 1.i i if xy xyG xG yG f x f y      

So, f is a group homomorphism. Thus, by fundamental theorem of group homomorphism, we have 

 
1ker

i i
i

i

H Gf Hf G
  .   (1a) 

We shall prove that 1iKerf H  , where   1:i iKerf x H f x G   . For this, we have 

  1 1 1 1ker i i i ix f f x G xG G x G           

Now, i ix H H G x H     . So, 1 1 1, i i ix H x G x H G H         
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1ker if H        (2) 

Let 1 1 1 and i i iy H H G y H y G        . 

So,  

  1 1 1ker keri i if y yG G y f H f         (3) 

By (2) and (3), 1 keriH f  . 

Putting this value in (1a), we obtain 

 
1 1

i i
i

i i

H Gf HH G 
  . 

Since 
1

i

i

G
G

 is abelian and  if H  is a subgroup of 
1

i

i

G
G

, so  if H  is also abelian. 

Therefore, 
1

i

i

H
H 

 is also abelian. Hence H is solvable. 

3.3.4. Canonical Homomorphism. The mapping : /f G G H  defined by  f g Hg  for all 

g G  is an onto homomorphism, where H is a normal subgroup of G. It is called natural or canonical 
homomorphism and Kerf H . 

3.3.5. Proposition. Every quotient group of a solvable group is solvable. 

-OR- Let G be a solvable group and H is a normal subgroup of G, then G/H is also solvable. 

Proof. Let G be a solvable group and let 

0 1 2 ... rG G G G G e        

be a solvable series for G, then 

(i) 1   ,  0 1i iG G i r      

(ii) 1

i

i

G
G   is abelian, 0 1i r   . 

Let : Gq G H  be a canonical homomorphism, that is, 

     for all q x xH x G   

Since    1 1 so .i i i iG G q G q G    

Now consider the series 

       0 1 2 ... rG H q G q G q G q G H       . 
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We claim that this series is a solvable series for G H . 

Let    1  and i ix q G y q G  , then there exist 1 and  such thati iG G        and .x q y q    

Now 1
1 1 1,  and   ,  so i i i i iG G G G G   
      . 

Therefore,            1 1
1 1i iq q G q q q q G     
     

         1 1
1 1i iq q q q G y xy q G   
     and hence    1   .i iq G q G   

Now we shall prove that  
 

 1

i

i

q G
q G

 is abelian. 

Let 
 

 1
, i

i

q G
q G 


  be any two arbitrary elements. Then, 

     1 1 and  for some ,i i iq G q G q G         . 

Also,      ,   '  and '  for some ', 'i iq G q q G            . Therefore, 

         1 1 1 1' '  and 'i i i iq G q q G q G q G            . 

Then, 

           1 1 1 1 1 1 1 1' ' ' ' ' ' ' 'i i i i i i i iq G q G q G G q G G q G q G                     . 

Therefore, 
 

 1

i

i

q G
q G

 is abelian. Hence G/H is solvable. 

3.3.6. Proposition. Let G be a group and H be a normal subgroup of G. If H and G/H both are solvable, 
then G is also a solvable group. 

Proof. Since H is solvable, so let 0 1 2 ... nH H H H H e        be a solvable series for H. 
Therefore, 

(i) 1   ,  0 1i iH H i n      

(ii) 
1

i

i

H
H 

 is abelian, 0 1i n   . 

Now, since G/H is solvable, so let  

0 1 2 ... mG H G H G H G H G H H        

be a solvable series for G/H. Therefore, 
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(i) 1 H   H,  0 1i iG G i m      

(ii) 
1

i

i

G H
G H

 is abelian, 0 1i m   . 

Now consider the series 

0 1 2 0 1 2... ...m nG G G G G H H H H H e              

We claim that this is a solvable series for G, that is, we are to show that 

(i) 1 1  ,  0 1 and   ,  0 1i i j jG G i m H H j n          

(ii) 
1

i

i

G
G 

 is abelian, 0 1i m    and 
1

j

j

H
H 

 is abelian, 0 1j n   . 

(i) It is clear that 1  ,  0 1j jH H j n     . 

So, we are to show that 1   ,  0 1.i iG G i m      

Let 1 and i ix G y G   . Then, 1H  and i ixH G yH G H  . Due to solvability of G/H, we have 

    1
1 1H   H   Hi i iG G xH yH xH G
     

1 1
1 1 H   i ix yxH G x yx G 
      

Thus, 1    for every .i iG G i   

(ii) Again, it is clear that 
1

j

j

H
H 

is abelian, 0 1j n   . 

So, we have only to prove that 
1

i

i

G
G 

 is abelian, 0 1i m   . Due to Third Theorem of Isomorphism, 

1 1 1

i i i

i i i

G H G G
G H G G  

  is abelian. 

Hence G is solvable. 

3.4. p-group. A finite group whose order is pn for some integer 1n  , where p is a prime, is called a p-
group. 

3.4.1. Cyclic group. A group G is said to be cyclic group generated by an element a G  if every 
g G  is such that tg a  for some integer t. We denote it by G = <a>. 

Remark. If the order of a group is a prime number, then the group is cyclic and every cyclic group is 
abelian and every abelian group is solvable. 
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3.4.2. Center of a group. Let G be a group then the center of G is given by 

       :  for all .Z G C G x G xy yx y G      

3.4.3. Corollary. Every finite p-group is solvable. 

Proof. Let G be a finite p-group and let   no G p  for some 1n  . 

If n=1, then  o G p  so G is cyclic. Hence G is abelian and so solvable. 

So let n > 1 and suppose as our induction hypothesis that result is true for all p-groups with order 
prwherer < n 

Now, if G is abelian then result is again true, so let G is non-abelian.  

Then, Z(G), the center of G, is non- trivial by class equation. But we know that ( )  .Z G G Now, 

       for some .n so G p o Z G p s n     

Since ( )Z G  is non-trivial, so  ( ) 1 1.o Z G s    

Then,    
  ( ) .n s no G

o G Z G p p
o Z G

    

So, by induction hypothesis, ( )G Z G  is solvable. Now, ( )Z G  is abelian, so ( )Z G  is also solvable. 
Then, by above proposition, G is solvable.        

Remark. Let H and K be two groups. Then, the direct product of these groups is the group 

  x , : ,H K h k h H k K   .  

Also, if ',  then '  and   x .K K X K X K K H K    

3.4.3. Corollary. Direct product of two solvable groups is again solvable. 

Proof. Let H and K be two solvable groups and X = HxK. We know that   x .K H K X   Define a 
mapping :f X H  by setting 

     ,  for all .f x f h k h x X    

It is easy to show that f  is well-defined. 

To show that f  is a homoporphism. 

Let ,x y X , then    1 1 1 1,  and ,  for some , ; , .x h k y h k h h H k k K    Therefore, 

            1 1 1 1 1, , , , , .f x y f h k h k f hh kk hh f x f y     

Hence, f  is a homomorphism. 
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To show that f  is onto. 

Let h H , then for every k K , we have    ,  and , .h k X f h k h   

Hence f  is onto. 

Thus, by fundamental theorem of homomorphism, we have X Kerf H .    ---(*) 

Now, we claim that ker f K . 

Let k K , we define   ' , : ,K e k e H k K   . 

We shall show that ker 'f K . 

For this, let  ker ,  where .x f f x e e H     

But  ,  for some , .x h k h H k K    Therefore, 

   ,         , '    ker '          ---(1)f h k e h e x e k K f K         

Let  '    ,    for some .x K x e k k K     Thus, 

     ker    ' ker                                         ---(2)f x e x f K f      

By (1) and (2), we obtain 

  ' ker , : ,K f e k e H k K     

Now, by (*), we obtain 

'X K H                    ---(**) 

We claim that  ' x ,  where K K e K e H   . 

Define a mapping : 'K K  , by setting 

   ,k e k            for all k K . 

To show that   is a homomorphism. 

Let ,x y K , then 

          , , , ,x y e xy e x e y x y      

To show that   is one-one. 

Let 1 2,k k K  such that        1 2 1 2 1 2    , ,       k k e k e k k k      . 
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To show that  is onto. 

Let  , 'e k K , then for k K ,    ,k e k   

Hence   is an isomorphism. Therefore, 'K K . 

Thus, by (**), since 'K K , so ' .X K X K X K H    

Since H is solvable, so X/K is solvable. 

Also subgroup K of X is solvable. Hence X = HxK is solvable. 

3.4.4. Remark. (i) Let H and K be two subgroups of a group G. Then, HK is a subgroup of G iff HK = 
KH.If   H G , then HK = KH and so HK is a subgroup of G. 

(ii) Second Theorem of Isomorphism. Let H  and K  are subgroups of any group G, where   H G . 

Then, .K HK
H K H  

3.4.5. Corollary. Let H and K are solvable subgroups of G and   H G , then HK is also solvable. 

Proof. Since      H G HK KH   , therefore HK is a subgroup of G. Now, by second theorem of 
isomorphism, we have 

K HK
H K H .

 

Now, K is solvable, so K
H K  is solvable, since factor group of a solvable group is solvable. So 

HK
H  being isomorphic to K

H K  is solvable.But H is given to be solvable, so HK is also 

solvable, by above proposition. 

3.4.6. Sylow p-subgroup.Let G be a finite group and p, a prime number, such that  |kp o G  and 

 1 |kp o G . Then, any subgroup of G of order pk is called a Sylow p-subgroup of G, where o(G) = 
pkq, q is an integer. 

3.4.7. Sylow’s First Theorem. Let G be a finite group of order pkq, 1k  , where p is a prime number 
and q is a positive integer such that g.c.d.(p, q) = 1. Then, for each i, 0 i k  , G has atleast one 
subgroup of order pi. 

3.4.8. Sylow’s Third Theorem. Number of Sylow p-subgroups is of the form 1+mp, where p is a prime 

and m is non-negative integer such that  1 |mp o G . 

3.4.9. Result. (i) If   2o G p , where pis a prime, then G is abelian. 

(ii) If G has only one Sylow subgroup of order pi, then that subgroup will be normal in G. 
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3.4.10. Corollary. Every group of order pq is solvable, where p, q are prime numbers not necessarily 
distinct. 

Proof. Let  o G pq . If p q , then   2o G p and G is abelian and hence solvable.So, let us assume 

that p q . Then, by Sylow’s theorem, G has Sylow p-subgroups each of order p and number of sylow 

p-subgroups is of the form 1+mp such that  1 |mp o G .That is, 

1 |        1 |          0mp pq mp q m     . 

Hence, G has unique Sylow p-subgroup, say H, and  o H p . Also, we know that unique Sylow p-

subgroup is always normal, so   H G . 

Now,      
 

 and .
o G

o H p o G H q
o H

  
 

Thus, H and G/H are both subgroups of prime order, so they are cyclic and hence abelian and in turn 
solvable. Therefore, by above proposition, G is solvable. 

3.4.11. Corollary. Every group of order p2q is solvable, where p, q are prime numbers not necessarily 
distinct. 

Proof. Let  o(G) =  p2q , we consider the following three cases 

Case (i)  p = q, Case (ii)  p > q, and Case (iii)  p < q. 

Case (i). If p = q, then  o(G)  =  p3  and we know that a finite p-group  is solvable hence  G  is  solvable. 

Case (ii). If  p > q then by Sylow theorems, G has Sylow p-subgroups each of order p2 and number of 
these subgroups is 1+ mp such that 1 ( )mp o G , m is non-negative integer. 

Since gcd (p , q) = 1, so 21 mp p q , implies, 1 mp q . 

   m  =  0, as  p > q. 

Thus, G  has unique Sylow  p-subgroup, say H, and o(H) = p2. Also, we know that unique Sylow p-
subgroups is always normal so HG. 

Now, o(H) = p2 and  o G H  = ( ) 
( )

o G q
o H

 . 

Now, H is abelian, since a group of order  p2  is always abelian and so  H  is solvable. 

Again, G H , being of prime order,  is cyclic hence abelian and therefore solvable. 

Now, H and G H  both are solvable, so by above proposition, G  is also solvable.  

Case (iii). If p < q then by Sylow theorems, G has Sylow p-subgroups each of order p2 and number of 
these subgroups is   np =  1+ mp such that 1 ( )mp o G  , m is non-negative integer . 

Since gcd (p , q) = 1, so 21 mp p q , implies 1 mp q , so np = 1+ mp = 1 or q.  
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Again, by Sylow theorems, G has Sylow q-subgroups each of order q and number of these subgroups is 
nq =  1+ m q such that 1 ( )m q o G  , m is non-negative integer . 

Since gcd (p , q) = 1, so 21 m q p q , implies 21 m q p , so nq = 1+ m q = 1 or  p  or  p2.  However, p < q  
so 1+ m q   p  so   nq = 1+ m q = 1  or   p2 

Following four sub-cases arise: 

(a) np  =  1, nq  =  1 

(b) np  =  1, nq  =  p2  

(c) np  =  q, nq  =  1 

(d) np  =  q, nq  =  p2  

If np = 1, then G is solvable according to case (ii). So, G is solvable in sub cases (a) and (b). In sub case 
(c) we have nq = 1, that is, G has unique Sylow q-subgroup of order q, say K. Then K is a normal 

subgroup of G and o(K) = q and o( G K ) = 
2p q
q

 = p2. Then both K and G K , being abelian, are solvable 

and hence G is solvable by above proposition.  

Now we shall prove that sub-case (d) is impossible. In this case, we have p2 Sylow q-subgroups each of 
order q, let these be K1, K2,… , 2p

K . Every Ki has q  1 element of order q.   

Also,  Ki   Kj  =  {e}.  So , we have  p2 (q 1)  element of order q. 

Now , G has q Sylow p-subgroups of order p2 , let there be   H1 , H2 ,… ,Hq  and  o(Hi) =  p2 

Now ,  1 2 1( ) ( )o H H o H   =  p2            o(H1 H2)  =  1  or  p  or  p2 

But       o(H1 H2)     p2   ,   because if  o(H1 H2)  =  p2  ,  then  o(H1 H2)  = o(H1) 

But     H1 H2   H1  ,  so   H1 H2  =  H1           H1   H2.   

Similarly  H2   H1        H1  =  H2 which is not so.  So ,  o(H1 H2)  =  1  or  p. 

Now ,  o(H1 H2)  =  o(H1) + o(H2)  o(H1 H2) =  p2 + p2 – (1  or  p)     p2 + p2 – p. 

So ,  G has at least   p2 + p2 – p + p2 (q – 1) = 2p2  p + p2q p2  =  p2  p + p2q  > p2q, elements, which 
is a contradiction. 

Therefore, G is solvable in all possible cases. 

3.4.12. Exercise. The symmetric group Sn is solvable for 4n  . 

Solution. For 11,  ,n S I    obviously solvable. 

For  22,  , 1 2 .n S I    Here,  2 2o S  , a prime number and so 2S is abelian and hence solvable. 

For          33,  , 1 2 , 1 3 , 2 3 , 1 2 3 , 1 3 2 .n S I    

Consider the sequence 3 3 .S A I    
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Clearly, 3 3 3   and   .A S I A     

Here,  3 3 3 32o S A S A   is cyclic and so abelian. 

Also,  3 33o A I A I       is cyclic and so abelian. 

So, the above series is a solvable series for S3 and hence S3 is solvable. 

For 4,n   consider the sequence 4 4 4 .S A V I     

We know that 4 4 4 4 4  ,    and   .A S V A I V      

Here,  4 4 4 42o S A S A   is cyclic and so abelian. 

  4 4 4 43o A V A V   is cyclic and so abelian. 

and   2
4 44 2o V I V I        is cyclic and so abelian. 

So, the above series is a solvable series for S3 and hence S3 is solvable. 

3.4.13. Lemma. If a subgroup G of Sn (n > 4) contains all 3-cycles and H be any normal subgroup of G 
such that G/H is abelian. Then H contains all 3-cycles in G. 

Proof. Given H is a normal subgroup of G. Consider the quotient group G/H and canonical 
homomorphism : /G G H  given by 

        for all .H G      

We know that for this homomorphism,   is onto and ker .H   

Let , G    then  and    are permutations in Sn. We compute, 

         
    
    

1 1 1 1

1 1

1 1                                             G/H is abelian

.  Identity of G/H.

H H H H

H H

H H H

           

   

   

   

 

 







  


 

1 1

1 1

ker        for all ,
            for all ,

G
H G

     
    

 

 

  

  
 

Now, let    i j k be any 3-cycle in G. We shall prove that    i j k H . 

Since n > 4, so we can find l and m such that both do not belong to the set  , ,i j k . Let

      and   i k l j k m    be any two elements in G. Then 
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1 11 1         
          

i k l j k m i k l j k m

i l k j m k i k l j k m i j k H

      

  
 

But    i j k  was an arbitrary 3-cycle in G and hence H contains all 3-cycles of G. 

3.4.14. Theorem. The group Sn is not solvable for n > 4. 

Proof. Let, if possible, Sn (n > 4) is solvable and let 

0 1 2 ...n rS G G G G e        

be a solvable series for Sn. Then, we have 

(i) 1   ,  0 1i iG G i r      

(ii) 
1

i

i

G
G 

 is abelian, 0 1i r   . 

Here, G0 = Sn and so G0 contains all the 3-cycles. Now, since 1 0  G G  and 0 1G G  is abelian and so by 
above lemma G1 contains all 3-cycles in Sn. Again, G1 is a subgroup of Sn containing all the 3-cycles 
and 2 1  G G  and 1 2G G  is abelian and so by above lemma G2 contains all 3-cycles in Sn. Continuing 

like this, we get rG I   contains all 3-cycles of Sn which is absurd. Therefore, Sn (n > 4) is not 
solvable. 

3.4.15. Theorem. A finite group G is said to be solvable iff there exists a sequence of subgroups 

0 1 2 ... nG G G G G e        such that 

(i) 1   ,  0 1i iG G i n      

(ii) 
1

i

i

G
G 

 is cyclic group of prime order for 0 1i n   . 

Proof. Let G be a solvable group and  

0 1 2 ... rG G G G G e        

be a solvable series for G. Since G is finite, so each subgroup and its quotient group is finite. In 

particular, 
1

i

i

G
G 

 is finite and abelian also. 

If 
1

i

i

G
G 

 is cyclic group of prime order, then we have nothing to prove. 
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If 
1

i

i

G
G 

 is not cyclic group of prime order, then it has a proper subgroup, say H . But then 

1i

HH G 
  for some subgroup H of Gi. Since H  is a proper subgroup of 

1

i

i

G
G 

, so iH G and 

1iH G  . 

Therefore, we have a subgroup of G such that 1i iG H G   . Then, either 
1i

Ho G 

  
 

 is prime or 

there exists 'H such that 
1

'
i

H
G 

 is a proper subgroup of 
1i

H
G 

, then 

1 'i iG H H G     

Since Giis finite, so continuing like this at one stage after a finite number of steps, we get that 
'

1

i

i

H
G 

 is 

a cyclic group of prime order with 
'

1i i iG H G    

for some subgroup '  of i iH G . So, from the above discussion it follows that we can find subgroups 

0 1 1...
ii i i im iG H H H G       

such that , 1 , , , 1   and i j i j i j i jH H H H   is a cyclic group of prime order for 0 j m  . 

Hence, we have a sequence 

0 1

2 1

0 00 01 0 1 10 11 1 2 20

21 2 3 1

... ...
... ...

r

m m

m r m r

G G H H H G H H H G H

H H G H G e


            

         

such that , , 1i k i kH H   is cyclic group of prime order. 

Conversely, we know that every cyclic group is an abelian group, so converse is trivial. 

3.5. Commutator. Let G be any multiplicative group. Then commutator of two elements x and y of G is 
the lement x-1y-1xy of G. We denote it by [x, y]. 

If z is any other element of G, then the commutator of x, y, z is given by 

[x, y, z] = [[x, y], z] = [x-1y-1xy, z] = (x-1y-1xy)-1z-1(x-1y-1xy)z = y-1x-1yxz-1x-1y-1xyz 

3.5.1. Proposition. Prove that G is abelian iff [x, y] = e for all x and y in G 

Proof. If G is abelian, then 

[x, y] = x-1y-1xy = x-1xy-1y = e.e = e. 

Conversely, let [x, y] = e for all x and y in G. 
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1 1 1           x y xy e y xy x xy yx         

Thus, G is abelian. 

3.5.2. Proposition.      iff [ , ]  for all a Z G a x e x G   . 

Proof. Let  a Z G  = centre of G. 

Then, [a, x] = a-1x-1ax = a-1ax-1x = e.e =e 

Conversely, let [a, x] = e for all x G . 

1 1  for all a x ax e x G     

 for all ax xa x G    

 a Z G  . 

3.5.3. Commutator Element. The element y of G is said to be a commutator element of G if there exist 

a,b G  such that  y=[a,b] that is, y= 1 1a b ab   

3.5.4. Derived Subgroup. The subgroup of G generated by all the commutator of G is called the derived 

subgroup of G. We denote it by  G  or G’, that is, 

   ' , : ,G G x y x y G      

For example,  

   
        

3 3, : ,

, 1 2 3 , 1 3 2 , 1 2 3 , 1 3 2

S x y x y S

I I

   

 
 

 G  is also called first derived subgroup. 

3.5.5. Results. (i) Derived subgroup of a group G is a normal subgroup of G. 

(ii) A group G is abelian iff 'G = <e>. 

3.5.6. nth Derived Subgroup. Let G be a group, for every non-negative integer n, define G(n) inductively 
as follows: 

G0 = G, G(n+1) =   'nG , the commutator subgroup of G(n). 

G(n) is called nthcommutator subgroup or nth derived subgroup of G. Thus, 

         1 ' , [ , ] : ,n n n n nG G G G x y x y G         



Abstract Algebra  47 

 

Thus, 

 '

(2) ' ' '

(3) (2) (2) (2)

, [ , ] : ,

, [ , ] : ,

, [ , ] : ,

.                   .                   .

.                   .                   .

.                   .             

G G G x y x y G

G G G x y x y G

G G G x y x y G

   

     
     

( 1) ( ) ( ) ( )

      .

, [ , ] : ,n n n nG G G x y x y G      

 

3.5.7. Result. For any group G, 'G G  is always abelian. In general, we can say that    1n nG G   is 
always abelian. 

3.5.8. Theorem. A group G is solvable iff G(n) = <e> for some 0n  . 

Proof. Let G be a solvable group and let 

  0 1 2 ... tG G G G G e        

be a solvable series for G such that 

(i) 1   ,  0 1i iG G i t      

(ii) 1 ,  0 1i iG G i t     is abelian. 

To prove the theorem, first we shall prove that ( )k
kG G  for all 0 k t   by mathematical induction. 

If k = 0, then (0)
0G G G G    which is true. Thus, result is true for k = 0. 

Now, assume that ( )k
kG G  for some k. Then, by definition, we have 

 ( 1) ( ) ' ( ) ( ) ', ,k k k k
k k kG G G G G G G                      ---(1) 

Again, we claim that '
1k kG G  . 

Here,  ' , : , .k kG a b a b G    

Let   ', ka b G . Then, consider 

      
    

1 1 1 1
1 1 1 1 1 1

1 1 1 1
1 1 1 1 1

1

, k k k k k k

k k k k k

k

a b G a b abG a G b G aG bG

a G aG b G bG a ab bG

G

   
     

   
    



 

 



 

  1,  for all ,k ka b G a b G    
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'
1k kG G                                                                ---(2) 

By (1) and (2), we obtain 
( 1)

1
k

kG G
  

So, result is true for k+1 and hence by induction hypothesis, result is true for all positive integers, that is, 
( )  for 0k

kG G k t   . In particular, ( ) (t)  Gt
tG G e e      . 

Conversely, let (n)G e   for some 0n  . Then, consider the sequence 

 0 1 2 ... nG G G G G e        

We claim that this is a solvable series for G. For this we have to prove that 

(i)    1   i iG G   

(ii)    1i iG G   is abelian for each i. 

By definition, we have 
         1 , , : ,i i i iG G G a b a b G        

Let      1,  and i ia b G c G  . 

We shall prove that    11 , ic a b c G   . 

Consider,  

 
      

1 1 1 1 1 1 1 1 1 1

1 11 1 1 1

1 1

,

,

c a b c c a b abc c a cc b cc acc bc

c ac c bc c ac c bc

c ac c bc

         

    

 

 



   

 

Now,    1, i ic a G c ac G   . 

Also,    1, i ic b G c bc G   . 

Therefore,  1 1 1 ( ) ( ) ( 1), , ,i i ic a b c c ac c bc G G G            . 

Hence    1   i iG G  . 

Now, we prove that    1i iG G   is abelian. 

Let          1 1 1, ,  where ,i i i i iaG bG G G a b G    . 

Since      1,   ,i ia b G a b G    . 



Abstract Algebra  49 

 

         

       

               

1 1 1 11 1

1 1 1 11

1 1 1 1 1

 ,      

 b    

     is abelian.

i i i i

i i i i

i i i i i i

a b G G a b abG G

abG aG abG baG

aG bG bG aG G G

    

   

    

   

   

  

 

Hence G is a solvable group. 

3.5.9. Corollary. An is not solvable for 5n  and hence Sn is also not solvable for 5n  . 

Proof. We know that An, 5n  , is a non-abelian group. So, we can say that 'A .n I   

Also, we know that An, 5n  , is simple and so its only normal subgroups are An itself and the identity 
subgroup <I >. So, we must have 'A An n . 

 '' ' (2) A A A     A An n n n n      

In general, ( )A Ak
n n  for all integers k. 

Thus, ( )A k
n I   for any k.Hence An is not solvable. 

Now, An is a subgroup of Sn, Sn is also not solvable for 5n  , since subgroup of a solvable group is 
solvable. 

3.5.10. Corollary. Let G e  be a finite group. If G is solvable, then G contains a normal abelian 
subgroup H e  . 

Proof. Let G be a solvable group, then by above theorem, for some 1k  , we have ( )kG e  and then 
we have the solvable series 

       0 1 2 ... kG G G G G e        

We choose k such that ( 1)kG e   . Also, we have ( 1) ( )k kG G  is abelian. 

( 1)   is abeliankG  . 

So, ( 1)kH G  is an abelian subgroup of G and H e  . 

3.6. Lower Central Series. The lower central series (or descending central series) of a group G is the 
descending series of subgroups 

0 1 2 ... tG G G G G e        

where each Gn+1 = [Gn, G], the subgroup of G generated by all commutators [x, y] 
with x in Gn and y in G. Thus, G2 = [G, G] = G(1), the derived subgroup of G; G3 = [[G, G], G], etc. The 
lower central series is often denoted γn(G) = Gn. 

This should not be confused with the derived series, whose terms are G(n) := [G(n−1),G(n−1)], not Gn := 
[Gn−1, G]. The series are related by G(n)   Gn.  
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3.7. Upper Central Series. The upper central series (or ascending central series) of a group G is the 
sequence of subgroups 

0 1 2 ... tG G G G G e        

where each successive group is defined by:  1 : for all ,[ , ]i iG x G y G x y G     and is called the ith 
center of G (respectively, second center, third center, etc.). In this case, G1 is the center of G, and for 
each successive group, the factor group Gi /Gi+1 is the center of G/Gi, and is called an upper central 
series quotient. 

3.8. Check Your Progress. 

1. A group of order 1331 is solvable. 
2. If G is a group of order 21, then it is solvable. 
3. If G is a group having no proper subgroup, then it is solvable 
Answers. 

1. Every finite p-group is solvable. 
2. A group of order pq is always solvable. 
3. Since G has no proper subgroup, so it is a group of prime order and hence solvable. 
3.9. Summary. In this chapter, we derived that a finite group is solvable if there exists a subnormal 
series in which factor groups are cyclic groups of prime order. However, any arbitrary group is solvable 
if some nth derived subgroup of this group consists of only one element, namely the identity element and 
the solvability of Sn can be obtained independently or by using this result. 

3.10. Exercise 

1. A group of order pqr, where p, q, r are primes, not necessarily different, is solvable. 
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4 
NORMAL SERIES 

Structure 

4.1.  Introduction. 

4.2.  Normal Series. 

4.3.  Central Subgroup. 

4.4.  Maximal Subgroup. 

4.5.   Exercise. 

4.6. Check Your Progress. 

4.7.  Summary. 

4.1. Introduction. This chapter contains definition of normal series and its examples. Example of a 
subnormal series which is not normal is considered. Definition and important properties related to that of 
a nilpotent group, related to proper normal subgroup and center of a group, subgroup and its normalizer 
are discussed.  

4.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Every subgroup of a nilpotent group is nilpotent. 

(ii) Every factor group of a nilpotent group is nilpotent. 

(iii) Converse result of these results is not true. But after imposing some condition it can be obtained. 

(iv) Every p-group is nilpotent. 

(v) Sn is not nilpotent for n > 3. 

(vi) Maximal subgroup of a nilpotent subgroup is normal subgroup. 

4.1.2. Keywords. Central Series, Center of a Group, Commutator Subgroup. 

4.2. Normal Series. A sequence of subgroups 0 1 2 ... rG G G G G e        of a group G is called 
a normal series of G if   iG G  for 1 .i r   
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4.2.1. Remark. Every normal series of a group is also a subnormal series for that group. But the 
converse is not true. For this, consider 

           
            

4 , 1 2 3 , 1 2 4 , 1 3 4 , 1 4 2 , 1 4 3 , 2 3 4 ,

2 4 3 , 1 2 3 4 , 1 3 2 4 , 1 4 2 3 , 1 3 2

G A I 
 

the alternating group of degree 4. 

Let          1 4 , 1 2 3 4 , 1 3 2 4 , 1 4 2 3G V I  , which is known as the klein’s four group. Again, let 

   2 , 1 2 3 4G I . 

Now consider the series 

0 4 1 4 2 3G G A G V G G I         

We know that 4V  is a normal subgroup of 4A  and also index of 2G  in 1G  is 2. Hence 2G  is a normal 
subgroup of 1G . Also, 3G  is a normal subgroup of 2G  as identity subgroup is always a normal subgroup. 
So, the series assumed is a subnormal series. 

To show that it is not a normal series, we shall show that 2G  is not a normal subgroup of G . For this, 

since  1 2 3 G  and 

             21 2 3 1 2 3 , 1 2 3 1 2 3 4 1 2 3 , 1 3 4G I   

and               2 1 2 3 1 2 3 , 1 2 3 4 1 2 3 1 2 3 , 2 4 3G I   

which shows that    2 21 2 3 1 2 3G G . So, the above series is not a normal series. 

4.2.2. Central Series. A sequence of subgroups 0 1 2 ... rG G G G G e        of a group G is 
called a central series of G if 

(i)   iG G  for 1 i r   

(ii)  1   i i iG G Z G G   for1 i r  . 

4.2.3. Nilpotent Group. A group G is said to be nilpotent if it has a central series. 

4.2.4. Example. Every abelian group G is nilpotent. The series G e   is a central series, that is 
  e G    and  

 
 

 
 

0 1 1

0

     

                                     G is abelian therefore, 

G G Z G G

G e Z G e

G Z G

G G G Z G



     

 

    

 

which is true. Hence G is nilpotent. 
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4.2.5. Exercise. Show that 3S  is not a nilpotent group. 

Proof. Here,           3 , 1 2 , 1 3 , 2 3 , 1 2 3 , 1 3 2S I . 

We know that only proper subgroups of 3S  are 

     
       

1 2

3 3

, 1 2 ,           , 1 3 ,

, 2 3 ,           A , 1 2 3 , 1 3 2 .

H I H I

H I I

 

 
 

Since 1 2 3, ,H H H  are not normal in 3S , so they cannot be the member of central series, if it exists. 
Further, 3 3  A S . We consider the series 

3 0 1 3 2S G G G A G I        

We check the condition  1i i iG G Z G G  . 

Firstly, for i = 1,  0 1 1G G Z G G  or  3 3 3 3S A Z S A  or 3 3 3 3S A S A , which is true. 

Secondly, for  1 2 2G G Z G G  or  3 3A I Z S I      or  3 3A Z S  or 3A I  , which is 
never true. 

So, above series is not a central series. 

Again, we consider the series 

3 0 1S G G G I      

In this series, 3  I S   . 

We check the condition  1i i iG G Z G G   for i = 1. 

For this,  0 1 1G G Z G G  or  3 3S I Z S I      or 3S I  , which is not possible. So, this 

series is also not a central series. So we proved that both possible normal series of 3S  are not central 
series. Hence 3S  is not nilpotent. 

4.2.6. Exercise. Every nilpotent group is solvable. 

Proof. Let G be any nilpotent group and 

0 1 2 ... rG G G G G e        

be a central series of G. then, 

(i)   iG G  for 1 i r   

(ii)  1  i i iG G Z G G   for1 i r  . 
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We shall prove that the above series is a solvable series for G. Since 1      i i iG G G G     for all 
1 i r  . Now, 

 1  i i iG G Z G G   

Since centre of a group is always abelian, so   iZ G G  is abelian. Also, every subgroup of an abelian 
group is abelian. So all factor groups are abelian. So, group G is solvable. 

Result. If in a group    G Z G  , that is, derived subgroup is contained in centre of the group, then 

 G Z G  is abelian. 

4.2.7. Exercise. Any group G with    G Z G   is nilpotent. 

Solution. We consider the series 

 0 1 2G G G Z G G e      . 

We know that     Z G G  and   e G   . 

Now,  0 1G G G Z G . But we are given that    G Z G  , so  G Z G  is abelian. Thus, 

    Z G Z G G Z G . Hence  0 1 1 G G Z G G  is true. 

Again,    1 2  = Z ZG G G e G    and      2  =Z ZZ G G G e G   . 

Therefore,  1 2 2 G G Z G G is true. 

So, the above series is a central series for G and hence G is nilpotent. 

4.2.8. Definition. Let H and K be two subgroups of G. Then, commutator subgroup generated by H and 
K is denoted by 

   , , : ,H K h k h H k K   . 

Remark. If  A Z G , then  for all ,ab ba a A b G   . 

4.2.9. Theorem. Let 0 1 2 ... rG G G G G e       be a normal series for G. This series is a central 

series iff  1,i iG G G  , 1 i r   or  1   i i iG G Z G G  iff  1,i iG G G  , 1 i r  . 

Proof. Suppose that the series 

0 1 2 ... rG G G G G e        

is a central series for G. Then, by definition,   iG G  and  1   i i iG G Z G G   for 1 i r  . 

Since  1   i i iG G Z G G   
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i
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a b abG G
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a b G

a b a G b G G

G G G



 

 





   
 

 

 

 

   

 

 

Conversely, let  1,i iG G G   

We shall prove that  1   i i iG G Z G G  . 

Now, let 1i i iaG G G , where 1ia G   and    i ibG Z G G , where b G . 

Further    1, ,i ia b G G G   

 

1 1 1 1

1

                    
         

i i i i i

i i i i i i i

a b ab G a b abG G abG baG
aG bG bG aG G G Z G G

   



     

   
 

4.2.10. Theorem. Every subgroup of a nilpotent group is nilpotent. 

Proof. Let G be a nilpotent group and let 

0 1 2 ... rG G G G G e        

be a central series for G such that 

(iii)   ,  1iG G i r    

(iv)  1,i iG G G  , 1 i r  . 

Let H be any subgroup of G and let ,  0i iH H G i r    , then consider the series 

  0 1 2 ... rH H H H H e                (1) 

of subgroups of H. 

We claim that the series (1) is a central series for H. 

First we prove that   ,  1iH H i r   . 

Let  and ix H y H  . Then   and i ix H G x H x G     . 

Since   ,iG G thus 1,  i ix G y H G y xy G      and 1, .x y H y xy H    Therefore, 
1

i iy xy H G H     and so   ,  1iH H i r   . 



56 Normal Series 

 

Now, we shall prove that  1,i iH H H  , 1 i r  . 

Let    1, ,ix y H H . 

Now 1 1 1       and i i ix H H G x H x G         and y H G  . 

So we can say that      1, ,                       By (ii) of giveni ix y G G G   

Also,  1 1,             ,x H y H x y xy H x y H       . 

Therefore,      , , ,       ,i i ix y G x y H x y G H H      . 

   1   , : ,i ix y x H y H H     

  1   ,i iH H H   

It shows that (*) is a central series for H. 

4.2.11. Theorem. Every quotient group of a nilpotent group is nilpotent. 

-OR- Let G be a nilpotent group and H be a normal subgroup of G, then G/H is also nilpotent. 

Proof. Let G be a nilpotent group and let 

0 1 2 ... rG G G G G e        

be a central series for G such that 

(iii) 1   ,  1iG G i r     

(iv)  1,i iG G G  , 1 i r  . 

Now consider the series 

0 1 2 ... rGH H G H H G H H G H H G H H H       . 

0 1 2 ...         (*)rG H G H H G H H G H H G H H H        

We claim that this series is a central series for G H , that is (i)   iG H H G H  and (ii) 

 1 ,i iG H H G H G H H  . 

Since   H G  and iG  is a subgroup of G. Therefore, i iHG G H . 

Thus, iG H  is a subgroup of G of iH G H . 

Since           iH G H G H   . 

Hence quotient group iG H H  is well-defined. 

To prove (i), let  and iG H H G H   . 
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Therefore,  for some  and  for some ixH x G H yH y G     . 

Now,        for some ,i i i ix G H x g h g G h H     . 

Therefore, i ixH g hH g H    . 

Consider     11 1
i iyH g H yH y g yH     . 

Now, 1 1   and ,             i i i i i i iG G g G y G y g y G G H G H H          . 

Thus,   iG H H G H . 

To prove (ii), let    1, ,iG H H G H   . 

Here, 1 1       for some i iG H H xH x G H       

and        for some G H yH y G     . 

Also, 1 1 1 1 for some ,i i i ixH g hH g H g G h H         . 

Consider,  

            1 1 1 1
1 1 1 1 1, ,i i i i i ig H yH g H yH g y g y H g y H G H H     
        . 

For,  1,i iG G G  . Therefore,  1 1 1,  for , .i i i i ig y G G H g G y G       

Therefore,   1 1, : , .i iG H H G H G H H        

Thus,  1 ,i iG H H G H G H H  . 

4.2.12. Corollary.  Every homomorphic image of nilpotent group is also nilpotent. 

Proof. Let G  be a nilpotent group and 'G  be its homomorphic image, then there exists an onto 
homomorphism ':f G G . So, by fundamental theorem of homomorphism 

'G kerf G  

Let ker f H , then   H G  and 'G H G . Now G is given to be nilpotent so by above theorem its 
quotient groupG H  is nilpotent. Therefore, 'G  being isomorphic to G H  is nilpotent. 

4.2.13. Corollary. ,  3nS n   is not nilpotent. 

Proof. We have proved earlier that 3S  is not a nilpotent group. Now, consider the function 3: nf S S  
by  

  3    for all f x x x S   
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where xon L.H.S. belongs to 3S  and x on R.H.S. belongs to nS , where x is represented in one-row 
representation and fixed elements are skipped. 

Here,            ,  1 2 1 2 ,  1 3 1 3f I I f f    etc. Clearly, f is a homomorphism. Now, since 3S  is 

not nilpotent so  3f S  is also not nilpotent which is a subgroup of nS  and so nS  is not nilpotent. 

4.2.14. Example. Show that if subgroup and quotient group of a group are nilpotent, then it is not 
necessary that the group is also nilpotent. 

Solution. Consider the symmetric group 3G S . This group is not nilpotent. 

Further, let 3H A . Clearly H is a subgroup of G and order of H is 3, a prime number, so H is a cyclic 
group and thus abelian. Further, we know that every abelian group is nilpotent, therefore, H is nilpotent. 

Also, G H  is a subgroup of order 2, so it is also an abelian group and so it is also nilpotent. 

4.3. Central Subgroup. A subgroup H is said to be a central subgroup of G if  H Z G , that is, H is 
contained in centre of G. Clearly, any central subgroup of a group is also a normal subgroup. 

4.3.1. Theorem. If H is a central subgroup of G. Also,   H G , both H and G H  are nilpotent 
subgroups of G. Then, G must be nilpotent. 

Proof. Since H is a nilpotent subgroup. Let 

0 1 2 ... tH H H H H e        

be a central series for H. Therefore, 

(iii)   ,  1iH H i t    

(iv)  1,i iH H H  , 1 i t  . 

Since G/H is also nilpotent, so let 

0 1 2 ... rG H G H G H G H G H H        
be a central series for G/H. Therefore, 

(iii) H   H ,  1iG G i r    

(iv)  1 ,i iG H G H G H  , 1 i r  . 

Now consider the series 

0 1 2 0 1 2... ...r tG G G G G H H H H H e              

We claim that this is a central series for G, that is, we are to show that 

(i)   ;    ,  1 ,  1i jG G H G i r j t       

(ii)  1 1, ,  ,i i j jG G G H G H     , 1 ,1i r j t    . 
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To prove (i), let ix G  and g G , then ixH G H  and gH G H . Since   iG H G H , therefore, 

    1
igH xH gH G H  . 

So, 1 1                for 1i i ig xgH G H g xg G G G i r        . 

Now, we prove that     for 1iH G i t   . 

We are given that H is a central subgroup and so  H Z G . 

Further,         for 1i iH H H Z G i t     . Therefore, elements of iH  commutes with every 
element of G. Thus, 

 for 1  and for all i iH g gH i t g G    . 

So,     for 1iH G i t   . 

To prove (ii), we shall prove that  1 1, ,  ,i i j jG G G H G H     , 1 ,1i r j t    . 

Let    1, ,ix y G G . Then, 1 1,        ,  i ix G y G xH G H yH G H      . 

But we have    1 ,       ,i i iG H G H G H xH yH G H     

             ,                  ,i ix y H G H x y G     

    1 1         , : ,       ,i i i ix y x G y G G G G G        

Again, let   1 1, ,       ,j jx y H G x H y G       . 

Since    1       jx H H Z G x Z G     . 

Thus,   1 1 1 1
1,       ,j j jx y x y xy x xy y e H H G H   
        . 

Hence G is a nilpotent group. 

4.3.2. Corollary. Every finite p-group is nilpotent. 

Proof. Let G be a finite p-group and let   no G p  for some 1n  . 

If n=1, then  o G p  so G is cyclic. Hence G is abelian and so nilpotent. 

So let n > 1 and suppose as our induction hypothesis that result is true for all p-groups with order 
prwherer < n. 

Now, if G is abelian then result is again true, so let G is non-abelian.  

Then, Z(G), the centre of G, is non- trivial by class equation. But we know that ( )  .Z G G Now, 

       for some .n so G p o Z G p s n     
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Since ( )Z G  is non-trivial, so  ( ) 1 1.o Z G s    

Then,    
  ( ) .n s no G

o G Z G p p
o Z G

    

So, by induction hypothesis, ( )G Z G  is nilpotent. Now, ( )Z G  is abelian, so ( )Z G  is also nilpotent. 
Then, by above Theorem, G is nilpotent. 

4.3.3. Example. Prove that centre of a nilpotent group G is always non-trivial, where o(G)>1. 

Proof. Let G be a nilpotent group and let 

0 1 2 ...             (1)rG G G G G e        

be the central series for G. Then, we have 

(i)   iG G  for 1 i r   

(ii)  1   i i iG G Z G G   for1 i r  . 

Since o(G)>1, so  0G G e  , so deleting the repeating subgroups from (1), we may take  1rG e  . 
Using condition (ii) for i = r, we have 

   1 1        r r r rG G Z G G G Z G     

But  1rG e  , so    Z G e . 

Hence Z(G), the centre of G is non-trivial. 

4.3.4. Result. If H is a subgroup of G such that [H,G]={e}, then  H Z G . 

Proof. Let ,h H g G   be any arbitrary elements. 

     1 1  ,                 h g e h g hg e hg gh h Z G H Z G           . 

4.3.5. Result. If H is a normal subgroup of G, then  ,H G H . 

Proof. Let    , ,h g H G  be any arbitrary elements. Then,  

   1 1 1 1 1,              as   h g h g hg h g hg H g hg H H G           . 

Hence  ,H G H . 

4.3.6. Theorem. Let G be a non-trivial nilpotent group and H be a non-trivial normal subgroup of G, 
then    H Z G e  . 

Proof. Since G is a nilpotent group. Let 

0 1 2 ...            (1)rG G G G G e        
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be a central series of G. then, 

(i)   iG G  for 1 i r   

(ii)  1  i i iG G Z G G   for1 i r  . 

Deleting the repeated subgroups of this series, we may assume that  1rG e  . Now, 

     1 1 1,       ,                (2)r r r rG G G e G G e G Z G           

We consider the two cases: 1 1 and r rH G e H G e       . 

If 1rH G e   , then clearly      1      , by (2)rH Z G e G Z G      

which is the required result. 

Again, if 1rH G e   , then there exists a positive integer k such that 

1 and              (3)k kH G e H G e       

Such a positive integer k will surely exist as 1 0 and rH G e H G H e       . 

Now consider      1, ,                  k k k k kH G G G G G H G G     . 

Also,      , ,                      kH G G H G H H G    . 

By these two, we get 

   1,       k k kH G G H G e H G Z G         

Now,          k k kH G e H G Z G H G e H Z G e               

which is the required result. 

4.3.7. Theorem. Let G be a nilpotent group and H be a proper subgroup of G, then H is a proper 
subgroup of its normalizer, that is,  H N H . 

Proof. Since G is nilpotent, so let 

0 1 2 ... rG G G G G e        

be a central series of G. then, 

(i)   iG G  for 1 i r   

(ii)  1,i iG G G   for1 i r  . 

Since rG e H   and 0H G , so there must exist an integer k such that kG H  but 1kG H   

Now,        1 1, ,       ,      ---(1)     k k k k kG H G G G G H H G H       
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Since kG H  so there exists an element x such that kx G  and x H . Let h H  be any arbitrary 

element. Then, 1h H   and  1, ,kx h G H H    . Thus, 

1 1 1 1 1 1                  x hxh H x hxh h H x hx H x Hx H             

Also,  1 1 1 1 1 1, ,             kx h G H H xhx h H xhx H h x Hx                

1   H x Hx   

Thus, we have  1             H x Hx xH Hx x N H     . 

But we have assumed that x H , so  H N H  and hence  H N H . 

4.4. Maximal subgroup. A subgroup H of a group G is called a maximal subgroup if H G  and there 
does not exist any subgroup K of G such that H K G  . 

-OR- 

H is said to be a maximal subgroup of G if H G  and whenever K is any subgroup of G such that 
H K G  , then K = H or K = G. 

4.4.1. Corollary. Prove that if a nilpotent group G has a maximal subgroup M, then M is a normal 
subgroup and G/M is a cyclic group of prime order. 

Proof. We know that  M N M G  , where  N M  is normalizer of M. But M is maximal, so M G  

and either  N M M  or  N M G . But by the above theorem  M N M . Therefore, 

                      iff N M G M G H G N H G       . 

Now, we claim that  o G M  is a prime number. 

Let T be any proper subgroup of G/M. Then T = K/M, where  and   K G M G  . Since T is proper 
subgroup, so 

        and      and 
   and           ,

T G M T M K M G M K M M
K G K M M K G
    

     
 

which is a contradiction, since M is a maximal subgroup. 

Hence G/M cannot have proper subgroups. Now, we know that a group having no proper subgroup is a 
cyclic group of prime order, so G/M is a cyclic group of prime order. 

Notation. Set of all Sylow p-subgroups of a group G is denoted by SylpG. If we write p pG Syl G , it 

means Gp is a sylow p-subgroup of G. 

4.4.2. Result. If Gp is a sylow p-subgroup, then     p pN G N N G . 
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4.4.3. Corollary . Let G be a nilpotent group and p pG Syl G , then Gp is a normal subgroup of G. 

Proof. We know that if Gp is a sylow p-subgroup, then     p pN G N N G . 

Let, if possible, Gp is not a normal subgroup of G. then, 

   ,  that is, p pN G G N G G   

By above theorem, we know that if G is nilpotent and H G , then  H N H . Taking  pH N G , 

we have     p pN G N N G  

which is a contradiction. Hence Gp is a normal subgroup of G. 

4.4.4. Theorem. Direct product of finite set of nilpotent groups is again nilpotent. 

Proof. Let H1, H2, …, Hn be any finite nilpotent groups. 

We have to prove that H1xH2x …xHn is also nilpotent. 

For this it is sufficient to assume that n = 2. 

Let H and K be two nilpotent groups. Then let 

0 1 2 ... rH H H H H e        

and 0 1 2 ... sK K K K K e        

are the central series for the groups H and K respectively. 

Now, if r < s, then we can assume 

 1 2 ...r r sH H H e       

and, if r > s, then we can assume 

 1 2 ...s s rK K K e       

to make the lengths of both series equal and so W.L.O.G., we can assume that r = s. Now, consider the 
series 

  0 0 1 1 2 2x x x x ... x ,r rH K H K H K H K H K e e       

We claim that this series is a central series for HxK. 

For this we shall prove that 

(i) x   x    for 1i iH K H K i r    

(ii)  1 1x , x    for 1i i i iH K G H K i r      

To prove (i), let x  and xi iH K H K   . Then, 
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 ,  for some   and i i i i i ih k h H k K     and  ,  for some   and h k h H k K    . 

Consider, 

           11 1 1 1 1, , , , , , ,i i i i i ih k h k h k h k h k h k h h h k k k          

But 1,  and          i i i i ih H h H H H h h h H     . Similarly, 1
i ik k k K  . 

Therefore,  1 1 1, x       x   xi i i i i ih h h k k k H K H K H K       . 

To prove (ii), let    1 1, x ,i ix y H K G  . 

Then,    1 1, ,  where ,  and ,  where ,i ix h k h H k K y a b a H b K       . 

Consider, 

               1 11 1 1 1 1 1, , , , , , , , ,x y x y xy h k a b h k a b h a ha k b kb h a k b          . 

But    1 1,       , ,i i ih H a H h a H H H       

and    1 1, b       , ,i i ik K K k b K K K      . 

Therefore, xi iH K  and hence  1 1x , xi i i iH K G H K   . 

This proves that HxK is a nilpotent group. 

For the generalization of the result, we can take H=H1xH2x …xHn-1 and K=Hn. 

Then, HxK=H1xH2x …xHn is nilpotent. 

4.4.5. Note. Direct product is known as direct sum in case of finite sets. 

4.5. Exercise. 

1. A group G is nilpotent then there exists some non-negative integer n such that the nth derived 
subgroup of G is the trivial subgroup <e>. 

4.6. Check Your Progress: 

1. If a group of finite order is nilpotent, then there exists a subnormal series of subgroups for which 
each factor group is a cyclic group of prime order. 

2. If G is a group having no proper subgroup, then it is nilpotent.S 

Answers: 

1. Every nilpotent group is solvable, apply the result of a finite solvable group. 

2. Since G has no proper subgroup, so it is a group of prime order and hence nilpotent. 
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4.7. Summary. In this chapter, we derived that if a nilpotent group G has a maximal subgroup M, then 
M is a normal subgroup and G/M is a cyclic group of prime order and if G is a non-trivial nilpotent 
group, H is a non-trivial normal subgroup of G, then    H Z G e  , which indicates that H contains 

atleast one element different from identity ‘e’ which commute with every element of the group. 
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5 
COMPOSITION SERIES 

Structure 

5.1.   Introduction. 

5.2.  Maximal Normal Subgroup. 

5.3.  Composition Series. 

5.4.  Zassenhaus Lemma. 

5.5.  Refinement of a series. 

5.6.  Jordan Holder Theorems. 

5.7.  Check Your Progress. 

5.8.  Summary. 

5.1. Introduction. This chapter contains definition of composition series and its examples. Important 
results related to composition series like Zassenhaus Lemma, Schrier’s Refinement Theorem, Jordan 
Holder Theorems are discussed. 

5.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Every Abelian group having a composition series must be finite. 

(ii) Any two subnormal series of a group have equivalent refinements. 

(iii) Every finite group must have a composition series. 

(iv) All Composition series of a group are equivalent. 

5.1.2. Keywords. Composition Series, Refinement of a Subnormal Series, Equivalent Series. 

5.2. Maximal Normal Subgroup. A normal subgroup H of a group G is said to be maximal normal 
subgroup if H G  and there does not exist any normal subgroup K of G such that H K G  . For 
example, consider 

          3 , 1 2 , 1 3 , 3 2 , 1 2 3 , 1 3 2S I  

Then,     3 , 1 2 3 , 1 3 2A I  
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is a maximal normal subgroup of 3S . But   , 1 2H I  is not a maximal normal subgroup of 3S , since 
H is not normal in G. 

5.2.1. Simple Group. If a group G has no proper normal subgroups, that is, if the only normal 
subgroups of G are {e} and G itself, then G is called a simple group. 

5.2.2. Theorem. A subgroup  H G  is a maximal normal subgroup of G iff G/H is a simple group. 

Proof. Let H be a maximal normal subgroup of G. We shall prove that G/H is simple. 

Let, if possible, G/H is not simple. Then, G/H must have a proper normal subgroup, say K/H. Then, 
 and ,  H  K, K  GK H G H K H H    . 

,  , H  K, K  G and H K GK G H K        

which is a contradiction to the fact that H is maximal normal subgroup of G. Hence G/H is a simple 
group. 

Conversely, Let G/H is a simple group. Then, there exists no proper normal subgroup K/H of G/H and 
hence there exists no proper normal subgroup K of G such that H  K . This proves that H is a maximal 
normal subgroup of G. 

5.3. Composition Series. An irredundant series 0 1 2 ... nG G G G G e        is called a 
composition series of G if each 1iG  is a maximal normal subgroup of iG or each factor group 1i iG G   is 
a simple group. 

Clearly, every composition series is a subnormal series. For example, consider the two series 

4 4 4                            ---(1)S A V I     

and        4 4 4                    ---(2)S A V A I      

where    , 1 2 3 4A I . Here, series (1) is only a subnormal series but not a composition series, since 

<I>is not a maximal normal subgroup of V4as 4V A I   and 4  A V . 

Series (2) is a composition series for S4. Here, all factor groups 4 4 4 4 4, , ,S A A V V A A I   are of 
order 2, 3, 2, 2 (prime) respectively and hence simple. 

5.3.1. Lemma. If G is an abelian group having a composition series, then G is finite. 

Proof. We know that a non-trivial group having no proper subgroup is a finite cyclic group of prime 
order. Let G be any simple abelian group, that is, G has no proper normal subgroup, which implies that 
G has no proper subgroup because all subgroups of an abelian group are always normal. Hence, by 
above result, G must be a finite cyclic group of prime order. Hence we have proved that a simple abelian 
group must be a finite cyclic group of prime order. 

Now, we are given that G has a composition series. Let it be 

0 1 2 ... nG G G G G e        
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Then, each 1i iG G  is a simple group. But G is abelian. Hence 1i iG G   is simple abelian group for 
0 1i n   . 

Therefore, by above discussion, each factor group 1i iG G   must be a finite cyclic group of prime order. 
We put i = n-1. Thus, 1 1 1n n n nG G G e G       must be of prime order. 

Let  1 1n no G p  . 

Let  2 1 2n n no G G p    for some prime 2np  . 

Thus,  
   2

2 2 1 2
1

      .n
n n n n

n

o G
p o G p p

o G


   


    

Continuing like this, we get 

  1 2 2 1 0...n no G p p p p p  , where  1i i io G G p  . 

Hence G is finite. 

5.3.2. Normal Subgroup. A subgroup N of a group G is said to be a normal subgroup of G iff Na = aN 
for all a G , that is, right and left cosets are same for every element of G. We denote a normal 
subgroup N of a group G by   N G . 

5.3.3. Second Theorem of Isomorphism. Let H  and K are subgroups of any group G, where   H G

. Then, .K HK
H K H  

5.3.4. Lemma. Let H and K be two subgroups of G such that Hk = kH for all k K . Then, HK is a 
subgroup of G. H is a normal subgroup of HK and H K is a normal subgroup of K and 

.K HK
H K H  

Proof. Since Hk = kH for all k K , so HK = KH. We know that HK is a subgroup of G iff KH = HK. 
Hence HK is a subgroup of G. 

Let x HK  be any arbitrary element. 

Then, x = hk for all ,  h H k K  . 

Also, HK = KH so     x HK x KH x kH      

1 1  for some x kh h H   . 

Then, Hx = Hhk = Hk = kH 

and xH = kh1H = kH. 

Therefore, Hx = xH for all x HK . 

Hence,   H HK . 
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Now, we prove that H K  is a normal subgroup of K. 

Let x H K   and y K be any elements. 

Since    and x H K x H x K     . 

Now, 1,  y   yx K K xy K    . 

Also, ,  y     xyx H K yH Hy Hy yH        

1 xy '  for some '   y xy '  for some 'yh h H h h H      . 

Hence 1y xy H  . 

Therefore, 1 1 1y xy ,  y xy   y xyH K H K       . 

So H K  is a normal subgroup of K. 

Hence all the conditions of second theorem of isomorphism are satisfied and so 

.K HK
H K H  

5.4. Zassenhaus Lemma (Butterfly Theorem). Let B and C be any two subgroups of a group G and B0 
and C0 be normal subgroups of B and C respectively, then 

 
 

 
 

0 0

0 0 0 0
.B B C C C B

B B C C C B
    

Proof. Let K B C   and  0 0H B B C  . Since 0 0 0     for all .B B B b bB b B     

But 0 0   for all                                                       ---(1)K B C B B k kB k K       

Now, 0 0      C C B C B C K       

   0 0 0               for all                ---(2)B C K B C k k B C k K         

Consider 

      
    

0 0 0 0 0 0

0 0 0 0 .

Hk B B C k B B C k B k B C

kB B C kB B C kH

       
    

 

Hence by above lemma 

                                            ---(3)HK K
H H K   

Now,             0 0 0                   ---(4)HK B B C B C B B C      

We shall prove that    0 0 .H K C B B C     
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Let y H K   be any arbitrary element. 

So,  0 0 and         and .y H y K y H B B C y K B C          

Now,  0 0 0 0 0 0             for some ,  .y H B B C y b b b B b B C         

Also,              for some .y B C y d d B C       

Thus, 1
0 0     .d b b db b    But 1

0 0       and d B C d C b B C C C         

1 1
0    and            .d C b C db C b C         

Again, 0 0 0 0 0,        .b B b C b C B      

Therefore,      0 0 0 0 0         ---(5)y b b C B B C H K C B B C          

On the other hand,  0 0 0 and .                  C B C B B C B C B C C C          

Therefore,   0 0 .C B B C B C K      

Also,       0 0 0 0 0 0.                              C B B C B B C H C B B        

Thus,   0 0                                      ---(6)C B B C H K     

From (5) and (6),    0 0                  ---(7)H K C B B C     

Using all the values of , ,  and H K HK H K  in (3), we obtain 

 
 

 
  

0

0 0 0 0
.      ---(8)B B C B C

B B C C B B C
     

Interchanging roles of B and C in (7), we get 

 
 

 
   

0

0 0 0 0
.      ---(9)C C B C B

C C B B C C B
     

But  0 0 0   and                        B C B C C B B C C C        

So, we must have      0 0 0 0C B B C B C C B     . 

By this it is clear that R.H.S. of (8) and (9) are same and hence we get 

 
 

 
 

0 0

0 0 0 0
.B B C C C B

B B C C C B
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5.5. Refinement of a series. Let G be a group and 0 1 2 ... rG G G G G e        be a 

subnormal series for G. A subnormal series ' ' ' '
0 1 2 ... sG G G G G e        is called a refinement 

of the former series if    ' ' ' '
0 1 2 0 1 2, , ,..., , , ,...,r sG G G G G G G G . 

The refinement is said to be a proper refinement if    ' ' ' '
0 1 2 0 1 2, , ,..., , , ,...,r sG G G G G G G G . 

5.5.1. Equivalent Series. Two subnormal series 

0 1 2 ... nG G G G G e        

and  ' ' ' ' '
0 1 2 ... nG G G G G e        

of a group G are said to be equivalent or isomorphic if there exists one-one correspondence between (1) 
and (2) such that corresponding factor groups are isomorphic, that is, 

'

'
1 1

   for 0 -1,0 -1.ji

i j

GG i n j nG G 

      

5.5.2. Scherier’s Refinement Theorem. Any two subnormal series of a group have equivalent 
refinements. 

Proof. Consider the subnormal series 

0 1 2 ...            ---(1)sG G G G G e        

and 0 1 2 ...            ---(2)tG H H H H e        

Then, 1   i iG G   for 0 1i s   , and 1   j jG G   for 0 1j t   . 

We define,  , 1 ,  0 1,  0                 ---(3)i j i i jG G G H i s j t        

and  , 1 ,  0 1,  0                 ---(4)k l k k lH H H G k t l s        

Since 1   i iG G  , we must have 

    1 1                 i i j i j i i j iG G H G H G G H G          

So, ,i jG  is a subgroup of G. 

Similarly, ,k lH  is also a subgroup of G. 

Now,    1 1 1 1 , 1 ,                   .j j i i j i i j i j i jH H G G H G G H G G            

Similarly, , 1 ,  .k l k lH H   

Since tH e   and 0H G , we have 

 , 1 1 1.i t i i t i iG G G H G e G        
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and    ,0 1 0 1 1 .i i i i i i i iG G G H G G G G G G         

Therefore, , 1 1,0 1,   for all 0 1     ---(5)i t i i iG G G G i s        

Similarly, , 1 1,0 1,   for all 0 1     ---(6)k s k k kH H H H k t        

Now, we consider two series 

0 0,0 0,1 0, 1 1,0 1,1 1,2 1,

2 2,0 2,1 1,0 1,1 1,

... ...
... ...               ---(7)

t t

s s s t s

G G G G G G G G G G
G G G G G G G e  

          

          
 

0 0,0 0,1 0, 1 1,0 1,1 1,2 1,

2 2,0 2,1 1,0 1,1 1,

... ...
... ...               ---(8)

s s

t t t s t

G H H H H H H H H H
H H H H H H H e  

          

          
 

Clearly (7) and (8) have same number of terms (ts+1). Also, each of 0 1 2, , , ..., sG G G G  occurs in (7). 
Thus, (7) is a refinement of (1). Similarly (8) is a refinement of (2). 

Now, since 1   r rG G   and 1   k kH H  , by Zassenhaus Lemma, we have 

 
 

 
 

1 1

1 1 1 1
.r r k k k r

r r k k k r

G G H H H G
G G H H H G

 

   

    

Thus, , ,

, 1 , 1
 for all 0 1,0 1.r k k r

r k k r

G H r s k tG H 
        

Hence, the refinement (7) and (8) are equivalent because every factor group of (7) is isomorphic to some 
factor group of (8). 

5.6. Jordan Holder Theorem. If a group G has a composition series then all its composition series are 
pairwise equivalent. 

Proof. Let 

0 1 2 ...            ---(1)sG G G G G e        

be a composition series for G. 

Suppose 0 1 2 ... tG H H H H e       be a refinement of the series (1). This refinement will be 
proper if for some j, jH  is a not equal to any iG . Then, we must have for some i, 1.i j iG H G    

Further, we choose j to be such that 1i jG H  . Then, 1 1.j i j iH G H G     

But 1          j j j iH H H G   . Also, 1 1          i i i jG G G H    . So, jH  becomes a proper normal 

subgroup of iG  which contains 1iG   properly, that is, 1i j iG H G    and   j iH G , which is a 

contradiction, because 1iG   is maximal normal subgroup of iG . 

Hence, we get that (1) cannot have a proper refinement and so we can say that any composition series of 
a group cannot have a proper refinement. 
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Now, let ' ' ' '
0 1 2 ...          ---(2)nG G G G G e        

be another composition series for G. 

As (1) and (2) are subnormal series also, so by Scherier’s Refinement Theorem, (1) and (2) must have 
equivalent refinements. But we have proved above that (1) and (2) cannot have proper refinements. 
Therefore, both of them must be equivalent. 

Hence all composition series of a group must be pairwise equivalent as (1) and (2) are any two arbitrary 
series for G. 

5.6.1. Jordan Holder Theorem For Finite Groups. 

(i) Every finite group having atleast two elements has a composition series. 

(ii) Any two composition series for G are equivalent, that is, if 0 1 2 ... kG G G G G e        
and 0 1 2 ... lG H H H H e        be two composition series for finite group G, then k = l and 

for all 0 1i k   ,    1 1i i i iG G H H    for some permutation   on the set  0,1,2,..., 1k  , that is

1 1i i j jG G H H  for some j. 

Proof. (i) We shall prove the result by induction on order of G. Let  o G n . 

When 2n  ,then 0 1G G G e    is the only composition series for G because 0 1G G G  being a 
cyclic group of prime order is simple. So, the theorem is true for 2n  . 

As our induction hypothesis, we assume that result is true for all groups of order less than  o G n , 
that is, all groups of order less than n has a composition series. We discuss two cases: 

Case I. If G is simple, then G has no proper normal subgroup. Consequently, 0 1G G G e     is the 
only composition series for G. 

Case II. If G is not simple. Let N be a proper normal subgroup of G. Since G is finite so there exist only 
finitely many proper normal subgroups of G containing N and let M be one such normal subgroup 
having largest number of elements. Then, M is a maximal normal subgroup of G. Clearly, G M  is a 
simple group and M G , so    o M n o G  . 

Hence, by induction hypothesis, M has a composition series, say 

0 1 2 ... tM M M M M e        

then 1i iM M   is a simple group for 0 1i t   . 

Now consider the series 

0 1 2 ...      ---(1)tG M M M M M e         

Here, G M  is one other extra factor group which is also simple as said above. Hence (1) is a 
composition series for G. 
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(ii) Suppose 0 1 2 ...            ---(2)kG G G G G e        

and 0 1 2 ...            ---(3)lG H H H H e        

are two composition series for the finite group G. We shall prove the result by induction. 

Let  o G n  and if 2n  , then 0 1G G G e     is the only composition series for G, so the result 
is trivial. Hence result is true for all groups of order 2. 

As our induction hypothesis, we assume that result is true for all groups of order less than  o G n . 

Let  o G n . We shall discuss two cases: 

Case I. When 1 1G H . Then, 

 1 2 ...            ---(4)kG G G e      

and 1 2 ...          ---(5)lH H H e      

are two composition series for the groups 1G , whose order is less than  o G n . So by induction 

hypothesis series (4) and (5) are equivalent. So, we must have 1 1      k l k l     and in series (2) 
and (3), we also have 

0 1 1 1 0 1G G G G G H H H    

Hence, series (2) and (3) are equivalent. 

Case II. When 1 1G H . 

Now, series (2) and (3) are composition series, so 1G  and 1H are maximal normal subgroups of G, then 

1 1K G H  is a normal subgroup of 1G as well as 1H . Also, since 1 1G H , so K is properly contained 
in 1G  as well as 1H , that is, 1 1 and K G K H  . 

Since 1G  and 1H  are normal subgroups of G, so 1 1G H  is also a subgroup of G [since HK is a subgroup 
of G iff HK = KH]. We claim that 1 1   G H G . 

Let 1 1x G H  and y G , so 1 1x g h  for some 1 1g G  and 1 1h H . 

Consider, 

  1 1 1 1 1 1
1 1 1 1 1 1 1 1      [   ,   ]y xy y g h y y g yy h y y g y y h y G H G G H H            

Also,  1 1 1 1 1 1 1 1 and                   G G H H G H G H   . 

Because 1G  and 1H  are maximal normal subgroups of G and 1 1   G H G , so we must have 1 1G H G . 

Since every finite group has a composition series so let 

0 1 2 ...            ---(*)lK K K K K e        
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be a composition series for the group K. 

Now, we consider the series 

0 1 0 1 2 ...            ---(6)lG G G K K K K K e           

0 1 0 1 2 ...           ---(7)lG H H K K K K K e           

First, we claim that (6) and (7) are composition series. For this, it is sufficient to prove that 1G K and 

1H K  are simple groups. 

 1 1 1,  and  are simple by (2), (3) and (*)i iK K G G G H  

By second theorem of isomorphism, we have 

 1 1 1
1 1 1

1 1 1
                          G H G H G HH G H    

 1
1 1 1 1 1

1
                                     &    ---(8)GG G G H K G HH K      

But 
1

G
H  is simple since (3) is a composition series, so 1G

K  must also be simple. Similarly, 

1 1 1 1

1 1 1 1
                                  ---(9)G H H HG

G G H G K    

But 
1

G
G  is simple since (2) is a composition series, so 1H

K  must be simple. 

By (8) and (9) it is clear that the series (6) and (7) are equivalent because first factor group of (6) is 
isomorphic to second factor group of (7) and first factor group of (7) is isomorphic to second factor 
group of (6) and all other factor groups are same. 

Now, by case I, series (2) and (6) are equivalent, so k = m+2. Again, by case I, series (3) and (7) are 
equivalent, so l = m+2. 

Hence, k = l. Also, series (6) and (7) are equivalent; therefore, the series (2) and (3) are equivalent. 

5.6.2. Exercise. 

1. Give example of a group having no composition series. 

5.7. Check Your Progress. 

1.  All the composition series for a group of order 121 are equivalent. 

Answers. 

1. Directly obtained from Jordan Holder Theorem for finite groups. 
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5.8. Summary 

In this chapter, we derived results for composition series and also derived that every finite group must 
have a composition series. Also it was discussed that any abelian group having a composition series is 
always finite. Thus the only possibility for a group having no composition series is an infinite abelian 
group. 
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6 
MODULES 

Structure  

6.1.  Introduction. 

6.2.  Module. 

6.3.  Homomorphism of Modules. 

6.4.  Minimal Generating Set. 

6.5.  Torsion Element. 

6.6.  Check Your Progress. 

6.7.  Summary. 

6.1. Introduction. In this chapter Module theory is discussed in detail. The concepts of generating sets, 
rank of a finitely generated module and direct sum of two submodules are detailed. 

6.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Simple Modules, Unital Modules, Free Module, Irreducible Module, Quotient Modules. 

(ii) Submodules. 

(iii) Kernel and Null Space of a homomorphism. 

(iv) Schurs’ Lemma. 

(v) Fundamental Theorem on Finitely Generated Modules. 

Keywords. Modules, Submodules, Free Module. Rank. 

6.2. Module. Let  R  be a ring.  A non empty set M is said to be a left module R  (or a left R - module) if 
M is an abelian group under an operation ‘+’ such that for every R , Mr m  , there exists a unique 
element rm M   subject to the conditions: 

(i) r(a+b) = ra+rb 

(ii) (r+s)a = ra+sa 

(iii) r(sa) =(rs)a 
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In a similar way, we can define a right R – module by modifying the conditions (i), (ii), (iii) in the above 
definition in the following manner, 

(i) (a+b)r =ar + br 

(ii) a(r + s) =ar + as 

(iii) (ar) s = a (rs) 

6.2.1. Note. The theory of right R-modules can be developed in same manner as the theory of left R-
module . We shall develop here the theory of left R-modules and shall be omitting the adjective left. 

6.2.2. Unital R-Module. If R is a ring with unity, then a R – module is said to be unital if  

                            1.m  =  m  for all mM. 

Remark. If a ring R is a field, then a unital R-Module is a vector space over the field  R . So we can say 
that concept of a module is a generalisation of the concept of a vector space. 

6.2.3. Example. Every abelian group G is a module over the ring of integers, Z.  

Solution. Let G be an abelian group, the operation in G being denoted by + and identity of G being 0. 
For any integer n and for element a ϵ G, we define  

na = a + a +…+ a    (n-times) 

Then by closure property na ϵ G. 

Now to prove that G is a module over I, we have to prove that 

(i) m( a + b) =( a + b) + ( a + b) +… +( a + b)       (m-times) 

                          =(a + a +… + a) + (b + b +… + b)        [G is  abelian] 

        = ma + mb 

(ii) (m + n) a = a + a +… + a                                         (m + n times) 

                = (a + a +… + a) + (a + a +… +a) 

                         m- times                 n- times  

                = ma + na  

(iii) m(na) = na + na +… +na                                          (m-times)   

           = n(a + a +… + a)                                              ( m-times) 

                             = ( a + a … + a ) + ( a + a …+ a ) + ...+ ( a + a …+ a)   [ n-times] 

                             = a + a +…+ a                                              ( mn - times)                                                                   

                            = (mn) a 

Hence G is a module over I.  
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6.2.4. Exercise. 

1. Every ring R is an R – module over itself. 

2. Every ring R is an module over its subring S, OR, If R is a ring and S be its subring then R is an S – 
module. 

Remark. With this, we confirm that ring R of real numbers is a Q – module and a Z – module. 

3. Every abelian group G is module over the ring of integer Z. 

4. Let  R  be a ring and n be a positive integer.  Then  1 2( , ,..., ) :n
n iR a a a a R   is an R – module 

under the operations defined by 

1 2 1 2 1 1 2 2( , ,..., ) ( , ,..., ) ( , ,..., )n n n na a a b b b a b a b a b       

and  1 2 1 2( , ,..., ) ( , ,..., )n nr a a a ra ra ra  

for all 1 2 1 2( , ,..., ), ( , ,..., ) n
n na a a b b b R  and for all Rr . 

5. (Elementary properties of module) Let R be a ring and M be an R – module. Then for all , , Ma b c , 
we have 

(i)     0a b a b     

(ii) 0    a b a b      

(iii)     a b a c b c      
(iv)     b a c a b c      

6. Let  R be a ring and M be an R – module . Then  

(i) 0 0  for all  Rr r   

(ii) 0 0  for all  Ma a   

(iii) ( ) ( ) ( ) for all R , Mr a ra r a r a        

(iv) ( )   for all R , , Mr a b ra rb r a b      

(v) ( )   for all  , R, Mr s a ra sa r s a     . 

7. Let R be any ring and λ be a left ideal of R. Let M consist of all cosets a + λ, where a ∈ R, of λ in R 
Thus, M = { a + λ : a ∈ R} Then, M is an R- module if the two requisite composition are defined as 
follows: 

(a + λ) + (b + λ) = (a + b) + λ 

r(a + λ) = ra + λ 

Remark. M is written as R- λ or R/λ and is called the difference (or quotient) module of R by λ. 
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6.2.5. Sub- module. A non – empty subset N of an R – module M is said to be submodule of M if N 
itself is an R – module under the operations of addition and scalar multiplication as defined for M. 

If M is an R-module then M itself and {0} are always submodules of M and are termed as improper 
submodules. Any submodules of M other than M and {0} are called proper submodule. 

6.2.6. Exercise.  

1. Let R be a ring and let M be an R – module.  A non –empty subset  N of M is a submodule of M iff N 
is additive subgroup of M and is closed under scalar multiplication  

Alternatively, A non – empty subset N of  R – module M is a submodule of M iff Na b   for  all  
, Na b  and N  for all N , Rra a r   . 

2. If A and B are two submodule of an  R- module M. Then A∩B is also a sub-module of  M. 

3. Arbitrary intersection of submodules of a module is a submodule. 

4. Let {Mλ} be a family of submodules of module M. Suppose this family is totally ordered or linearly 
ordered, that is, given 

1 2
, { }M M M     then either 

1 2 2 1
M M or M M      then M 


  is a 

submodule of M.  
5. If M is an R – module and Ma  then the set R {   :  R}a ra r   is a sub module of M. 

6. Let M be an R – module.  Define  S = {   :  R , Z}ra ma r m   , Z being the ring of integers, then S 
is an R – submodule of M containing ‘a’. 

7. If A and B are submodules of an R-module M, then A+B is also a submodule of M . 

6.2.7. Submodule generated by a subset of module. Let M be an R- module and S be a non-empty 
subset of M. If A is a submodule containing S and is itself contained in every submodule of M 
containing S, then A is called the submodule of M generated by S.The submodule of M generated by S 
will be denoted by < S >. It should be noted that < S > is the smallest submodule of M containing S. It 
can be seen that the intersection of all the submodule of M containing Sis the submodule of M generated 
by S. 

6.2.8. Theorem. The submodule of a unital R- module M generated by a subset S of M consists of all 
linear combinations of elements in S. 

Proof. Let L(S) denote the set of all linear combinations of the elements of S, that is,  
L(S)= {r1a1 + r2a2 + . . . + rnan : ai ∈ S, ri ∈ R} 

First we shall prove that L(S) is a sumodule of M. 
Let a = r1a1 + r2a2 + . . . + rnan and b = s1b1 + s2b2 + . . . + snbn be any two elements of L(S), where ri, si 
∈R  and  ai, bi ∈ S. 
We have, 
                  a-b = r1a1 + r2a2 +  . . . + rnan + (-s1)b1 + (-s2)b2 + . . . + (-sn)bn 
is a linear combination of some elements of S, which implies a-b ∈ S. Thus, L(S) is an additive 
subgroup of M. 



Abstract Algebra  81 

 
 

If r ∈ R and a = r1a1 + r2a2 + . . . + rnan ∈ L(S), then  

ra = r(r1a1 + r2a2 + . . . + rnan) 

     = r(r1a1) + r(r2a2) + . . . + r(rnan) = rr1(a1) + rr2(a2) + . . . + rrn(an) 

which implies, ra ∈ L(S), as rr1, rr2, . . . rrn ∈ R. Hence, L(S) is a submodule of M. 

Next, we claim that S is contained in L(S). 

Let a ∈ S, then a ∈ S, 1 ∈ R, so a.1 ∈ L(S), or, a ∈ L(S). Hence S is contained in L(S). 

Thus, L(S) is a submodule of M containing S. 

Now, if W is any submodule of M containing S,then each element of L(S) must be in W, as W is closed 
under scalar multiplication & addition. 

Therefore, L(S) will be contained in W. Hence, L(S) = < S >, that is, L(S) is the smallest submodule 
generated by S. 

6.3. Homomorphism of Modules. 

Let M and N be two R-modules. A mapping T : M → N is called a homomorphism or module 
homomorphism if  

(i) T(m1+m2) = T(m1) + T(m2) for all m1,m2 ∈ M 

(ii) T(rm) = rT(m) for all m ∈ M, r ∈ R 

The kernel K(T) of T is defined as  

K(T ) ={m ∈ M: T(m) = 0 where 0 is the additive identity of  N } 

8.3.1. Theorem. The kernel of a homomorphism is a submodule. 

Proof. Let  K(T) be the kernel of homomorphism T of R-module M in to an R-module N, then K(T) = 
{m ∈ M : T(m) = 0}. We are to prove that K(T) is a submodule of M. Since  

T(0) = 0 =>  0 ∈ K(T) => K(T) ≠ ∅ 

Let m1,m2 ∈ K(T) => T(m1) =  0 = T(m2), then T(m1 - m2) = T(m1) - T(m2) = 0 - 0 = 0 

=>  m1- m2∈ K(T) 

Hence, K(T) is an additive subgroup of M. 

Again, r ∈ R and m ∈ K(T)  => T(m) = 0, then T(rm) = rT(m) => r.0 = 0 =>  rm ∈ K(T) 

Hence, K(T) is a submodule of M.  

6.3.2. Theorem. The range of a homomorphism is a submodule. 

Proof. Let T: M → N is a homomorphism where M and N are R-submodules. Then, T(M) is the range 
of M under T. So, T(M) = {T(m) : m ∈ M}. 
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We claim that T(M) is a submodule of N. Let T(m1) and T(m2) be any two element of  T(M) where  
m1,m2 ∈ M 

We have, T(m1 - m2) = T(m1) - T(m2) => T(m1 - m2) ∈ T(M)                      [m1-m2 ∈ M ] 

∴ T(M) is an addtive subgroup of N.  

Let r ∈R and T(m) ∈T(M) where m ∈M, then we have rT(m) = T(rm ) ∈ T(M), as rm ∈ M. 

Hence T(M) is a submodule of N. 

6.3.3. Theorem. Let T:M→N be a module homomorphism. Then, T is a monomorphism iff K(T) = {0} 

Proof. Let T be homomorphism of an R-module M in to an R-module N and assume that K(T) = {0}. 
We claim that T is a monomorphism 

If m1, m2 ∈ M such that T(m1) = T(m2) 

=> T(m1) - T(m2) = 0  => T(m1- m2) = 0 

=> m1- m2∈ K(T) ={0} => m1- m2 = 0 

=> m1= m2   => T is one-one 

Conversely, suppose that t is one-one 

Let m ∈ K(T)  then T(m) = 0. We know that T(0) = 0   =>  T(m) =T(0) => m =0, since T is one-one. 
Hence Ker T = K(T) = {0}. 

6.3.4. Quotient Modules. Let A be any submodule of an R-module M. Then A is an additive abelian 
subgroup of M. If m ∈ M, then  m + A is coset of A in M. Then, 

M/A = { m + A : m ∈  M } 

is an R-module unknown as quotient module with addition and scalar multiplication defined as:  

(m1 + A) + (m2 + A) = (m1+m2) + A 

and r(m1 + A) = rm1 + A; r ∈ R, m1 ∈ M. 

6.3.5. Exercise. 

1. If M is an R-module and N is an R-submodule of M. The mapping T : M → M/N defined as 
T(m)=m+N for all m ∈ M. Then, T is an R- homomorphism of M onto M/N and kerT = N. 

2. Fundamental Theorem of Homomorphism on Modules. If T is a homomorphism of an R-module 
M onto an R-module N such that ker T = A then N is isomorphic to M/A, that is, kerM T N . 

Hint. To derive it define a mapping Ψ: M/A →N as Ψ(m + A) = T(m) for all m ∈ M, and then prove that 
this mapping is an isomorphism. 

6.3.6. Cyclic Module. An R-module M is said to be cyclic if there is an element mo ∈ M such that every 
m ∈ M is of the form m = rmo, where r ∈ R . Also mo is called a generator of M and we can write M = < 
mo > = {rmo : r ∈ R}. 
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6.3.7. Theorem. Let M be a unital R-module and for a fixed element m ∈ M, let A = {rm : r ∈ R}. Then, 
A is cyclic submodule of M generated by m. 

Proof. Let a, b ∈ A Then, a = r1m and b= r2m for r1,r2 ∈ R. We have  

a - b = r1m - r2m = (r1- r2)m ∈A                                               [   r1- r2∈ R] 

For r ∈ R and a ∈A such that a = r1m for some r1∈R 

ra = r(r1m)=(rr1)m ∈ A                                                            [   rr1 ∈R]  

=> ra ∈A  

Hence, A is a submodule of M. Also 1 ∈ R, so 1.m ∈ A => m ∈ A. Due to the definition of A, we 
conclude that A is cyclic submodule of M generated by m. 

6.3.8. Theorem. If A and B are submodules of M. Then, A B A
B A B

    . 

Proof. Consider the mapping Ψ: A+ B → A
A B  defined by  

 Ψ(x + y ) = x + (A   B)  for all x ∈ A, y ∈ B. 

(i) Ψ is well defined. Let x1 + y1, x2 + y2 ∈ A + B are such that  

x1 + y1= x2 + y2  =>  x1 - x2 = y2 - y1 

Since A and B are submodules of M, so x1, x2 ∈ A and y1, y2 ∈ B  => x1 - x2 ∈ A, y2 - y1 ∈ B. 

Now, x1 - x2 = y2 - y1 => x1 - x2 ∈ B                          [ y2 - y1∈B ] 

and y2 - y1 ∈ A                                                                  [  x1- x2∈A] 

=> x1 - x2 = y2 - y1 ∈ A   B 

=>  x1 - x2 ∈ A   B 

=>  x1 + A   B = x2 + A   B 

=>  Ψ(x1+ y1) = Ψ( x2 + y2) 

(ii) Ψ is a module homomorphism. Let x1 + y1, x2 + y2 ∈ A + B. Then  

Ψ[(x1+y1) + (x2+ y2)] = Ψ[(x1 +x2)+(y1 + y2)] 

=( x1+ x2) + A   B= (x1 + A   B) + (x2 + A   B) 

= Ψ(x1+y1) + Ψ (x2+ y2)  

and Ψ[r(x+y)]= Ψ(rx+ry) = rx  + A   B 

    = r(x + A   B)=r Ψ(x+y) 

Therefore, Ψ is a module homomorphism. 
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(iii) Ψ is onto.  

Let x+ A   B ∈ A
A B , where x ∈ A => x + y ∈ A+B  for y ∈ B and Ψ(x+y ) = x+ A   B 

=>Ψ is onto. 

By Fundamental Theorem of module homomorphism, we have  

ker
A B A

A B
       (*) 

We claim that ker Ψ = B. 

By definition, ker Ψ = {x+y : Ψ(x+y)= A   B} = {x+y : x+A   B = A   B} 

        = {x+y : x ∈ A   B}={x+y : x ∈ B, y ∈ B} 

       ={z : z ∈ B} = B 

Hence by (*), we have A B A
B A B

   . 

6.3.9. Irreducible Module. A R-module having no proper submodule is called an Irreducible module. 

6.3.10. Theorem. Prove that any unital, Irreducible R-module is cyclic. 

Proof. Let M be any unital irreducible R-module, then the only submodule of M are <0> and M itself. 
We claim that M is cyclic  

If M = < 0 >, then obviously M is cyclic. Let M ≠ < 0 > . Then, there exists atleast one element  mo ∈ M 
such that m0 ≠ 0 . 

Let A ={rmo : mo∈ M, r ∈ R} 

We shall prove that A is a submodule of M  

Let a, b ∈ A, then a= r1mo and b = r2mo for r1, r2 ∈ R and mo ∈ M. 

 We have, a - b = r1mo - r2mo = (r1- r2)mo ∈ A   => a - b ∈ A  

Therefore, A is an additive subgroup of M. 

Now let r ∈ R and a= r1mo ∈ A.  

Then ra = r(r1mo) = (rr1)mo ∈ A            [   rr1 ∈R] 

=> ra ∈ A for all r ∈R  

=> A is submodule of M 

As given M is unital module, so 1.mo = mo, where 1 is unity of R . 

Since 1 ∈ R, mo ∈ M => 1.mo ∈ A      =>  mo ∈ A. 

However, mo ≠ 0, so A ≠ < 0 >, but M is irreducible. So we must have A=M. 

Since A is cyclic, so M must be cyclic. 
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6.3.11. Exercise. 

1. If λ is a left ideal of R and M is an R-module, then for m ∈ M, λm={xm : x ∈λ} is a submodule of M. 

2. Let M be an R- module. If I is a right ideal of R, then the collection of elements y ∈ M such that by = 
0 for all b ∈ I is a submodule of M. 

Hint. Let A = {y : y ∈M, by = 0 for all b ∈ I }, Then A is a submodule of M 

6.3.12. Theorem. Suppose that R is a ring with unity and M is a module over R but is not unital. Then, 
there exists some non-zero m in M such that rm = 0 for all r ∈ R. 

Proof. Since M is not unital then there exists m ∈ M such that 1.m ≠m 
 =>1.m - m ≠0 But 1.m - m ∈ M [ 1.m∈M as 1 ∈ R, m ∈ M] 

Let m0 = 1.m -m ≠ 0 
Then rm0 = r(1.m - m) =r(1.m)  - rm = 0, that is, rm0 = 0 where m0 ≠ 0 for all r ∈ R 
In particular, rm0 = 0 for all r ∈ R. 
6.3.13. Exercise. If M is an irreducible R- module. Then, either M is cyclic module or for every m ∈ M 
and r ∈ R, rm = 0. 

Solution. Given M is irreducible, that is, < 0 > and M are the only submodules of M. 

Let m ∈ M. Consider  N= {rm : r ∈ R } 

We claim that N is a submodule of M  

Let α, β ∈ N => α = r1m, β = r2m for some r1, r2 ∈ R. Then α - β = r1m - r2m = (r1 - r2)m ∈ N, as r1 - r2 ∈  
R. Therefore, N is an additive subgroup of M. 

Let α ∈ N and r ∈ R then rα= r (r1m) =(rr1)m ∈ N.                             [   rr1 ∈R] 

Thus, N is a submodule of M . 
=> N = < 0 > or N = M 

If N = < 0 > then rm=0 for all r ∈ R, m ∈ M. 
If N = M, then M = {rm: r ∈ R, m ∈ M } 

=> M is a cyclic submodule. 
6.3.13. Exercise. 

1. Suppose M and N are submodules of a module P over R, then  
{0}M N   

iff every element z ∈ M+N can be uniquely expressible as z=x+y with x ∈ M, y ∈ N. 

2. The necessary and sufficient  condition for a module M to be the direct sum of its two submodules  
M1 and M2  are that (i) M = M1 +M2, (ii) M1   M2 = {0}. 
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Finitely Generated Module. An R-module M is said to be finitely generated if there exist elements a1, 
a2, . . ., an   M such that every m in M can be written as: 

m = r1a1 + r2a2 + … + rnan;           ri’s R 

Then, {a1, a2, . . ., an} is called the generating set of M. 

6.4. Minimal Generating Set. The generating set of a module which has as few elements as possible is 
called minimal generating set, that is, if we remove even a single element from this set, this set is no 
longer a generating set. 

6.4.1. Rank of a Module. The number of elements in a minimal generating set of module is known as 
the rank of module. 

6.4.2. Fundamental Theorem on Finitely Generated Module. 

Let R be a Euclidean ring, then any finitely generated R-module M, is the direct sum of a finite number 
of cyclic modules. 

Proof. We shall prove the theorem by induction on the rank of M. If rank of M is 1, then M is generated 
by a single element and hence M is cyclic. The theorem is true in this case. Now as an induction 
hypothesis, we assume that the theorem holds for all R-modules of rank k - 1. 

Now consider R-modules M with rank k. 

Given any minimal generating set a1, a2, …, ak of M, if any relation of the form 

n1a1 = n2a2 = … = nkak = 0, 

then M is the direct sum of M1,M2,….,MK where each Mi is cyclic generated by ai and the theorem is 
proved. 

So, let given any minimal generating set b1, b2, …, bk there exists r1, r2, …, rk   R such that r1b1 + r2b2 + 
… + rkbk = 0 but not all of r1b1, r2b2, …, rkbk are zero. 

Now among all possible such relations for all minimal generating sets, let s1 be the element of R with 
minimum d-value d(s1) and let the generating set for which it occurs be a1, a2, …, ak. Thus we have  

s1a1 + s2a2 + … + skak = 0.     (1) 
Now, if for any r1, r2, ..., r ; 

r1a1 + r2a2 + ... + rkak = 0,                            (2) 
 then we claim that s1/r1. 

Since r1, s1 ∈ R, a Euclidean ring, so there exist m, t ∈ R with r1 = ms1 + t, where either t = 0 or d(t) < 
d(s1). 

Multiplying (1), by m and subtracting from (2), we get  

(r1 - ms1)a1 + (r2 - ms2)a2 + ... + (rk - msk)ak = 0   =>    ta1 + (r2 - ms2)a2 + . . . + (rk - msk)ak = 0 

Thus by choice of s1 we must have d(s1) < d(t ) 

=> d(t)    d(s1)   =>   t =0    =>    r1= ms1   =>    s1/r1. 
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We further claim that s1/si  for i = 2, 3, …, k. 

Suppose not, then let s1 does not divide s2, so there exists m2, t2 ∈ R such that s2 = m2s1 + t2, where d(t2)< 
d(s1) [if t2 =0 then s1/s2]. 

Now clearly  '
1 1 2 2 2, ,..., ka a m a a a   generates M.  

Consider, s1
'
1a  + t2a2 + s3a3 + … + s kak = s1(a1 + m2a2) + t2a2 + s3a3 + ... + skak 

  = s1a1 + (s1m2 + t2)a2 + s3a3 + ... + skak 

  = s1a1 + s2a2 + s3a3 + ... + skak = 0. 

Thus, t2 occurs as a coefficient in some relation among elements of a minimal generating set. so by 
choice of s1 we have d(s1) < d(t2), which is a contradiction to the statement that 

d(t1) < d(s1)=> s1/s2 . 

Similarly it can be proved that s1/si for all i.  

Let s2 = m2s1, s3 = m3s1, ..., sk = mks1,                                  [2(a)] 

Now consider the elements *
1a  a1 + m2a2 + ... + mkak, a2, a3, …, ak. Clearly *

1a , a2, ..., ak generate M. 

Let M1 be the cyclic submodule of M generated by *
1a  and M2 be the submodule of M generated by a2, 

...,ak. We claim that M = M1 M2   (*) 

Since *
1a , a2, ...,ak generate m, so clearly M = M1 +M2 in order to prove (*) only we have to prove now is 

that M1  M2 = {0}. For this, let p ∈ M1  M2 

=> p ∈ M1 and p ∈ M2 

Now, p ∈ M1  => p = r1
*
1a , for some r1 ∈ R                                  [   M1 is generated by *

1a ] 

Also, p ∈ M2 => p = r2a2 + ... + rkak  for some r2, r3, ..., rk ∈ R 

Now we have r2
*
1a   r2 a2 + ... + rkak,  

=> r1
*
1a  - r2 a2 + ... + rkak = 0  

=> r1(a1 + a2m2 + ... + akmk) - r2a2 - ... - rkak = 0 
=> r1a1 + (r1m2 - r2)a2 + ... + (r1mk - rk)ak = 0      (3) 

Thus we have obtained a relation between a1, a2, ..., ak in which coefficient of a1 is r1. Hence by what we 
have proved above s1/r1. Let r1 = ls1 where l ∈ R, so we have  

p = r1a1*  
      = l[s1(a1 + m2a2 + ... + mksk)] = l[s1a1 + s1m2a2 + … + s1mkak] 
     = l[s1a1 + s2a2 + ... + skak] = l(0) = 0. 

1 2 {0}M M   



88 Modules 

 

and this proves (*), that is, M is direct sum of M1 + M2. Now, M2 is generated by a2, a3, ..., ak. Thus, rank 
of M2 is atmost k - 1. So by induction hypothesis, M2 is the direct sum of cyclic submodules. Therefore, 
M is the direct sum of cyclic modules. 

6.4.3. Schur's Lemma. If M is an irreducible or simple R-module, then the endomorphism ring EndR 
(M) is a division ring. 

Proof. Let ∅ (≠ 0) ∈ EndR(M), since ker∅ is a submodule of M and ker∅ ≠ M, so ker∅ = {0}, thus ∅ is 
one one. Also, the image of ∅(M) is an R- submodule of M. 

Since ∅ ≠ 0 => ∅(M) ≠ 0. 

But M is irreducible => ∅(M) = M  => ∅ is onto. Thus ∅ is one one and onto, hence has an inverse in 
EndR (M). Hence, we have shown that every non zero element of EndR(M) is invertible. Hence EndR(M) 
is a division ring.  

6.4.4. Free Module. An R-module M is called a free module if M has a basis, that is, there exists a 
subset S of M such that M is generated by S and S is linearly independent set. 

6.4.5. Theorem. Let M be a free module with a basis {e1,e2,...en} then  
nM R  

6.4.6. Annihilator of an element.  

Let M be an R-module and x ϵ M. The subset {r ϵ R: rx = 0} is called annihilator of x and is denoted by 
Ann(x). 

6.4.7. Exercise. Ann(x) is a left ideal of R. 

6.4.8. Theorem. Suppose 1 ϵ R, then M is a cyclic module iff M R I , where I is a left ideal of R. 

Proof. First suppose that M is cyclic R-module, then M = Rx for some x ϵ M 

Define a mapping f: R→M by f(r) = rx 

Now we shall show that f is a homomorphism of left R- module 

f(r + s) = (r + s)x = rx + sx = f(r) + f(s)    r, s ϵ R 

and  f(sr) = (sr)x = s(rx) = sf(r)      r, s ϵ R 

Hence, f is an R-module homomorphism. 

We shall prove that f is onto. 

Let y ϵ M = Rx. Then, y = rx for some r ϵ R. Now, r ϵ R   f(r) = rx = y. Hence, f is onto. 

Thus, by Fundamental Theorem of Homomorphism  R MI  , where I = ker f is a left ideal of R. 

Conversely, suppose that R MI   

Let f: R MI   be the given homomorphism. Since 1+I ϵ R
I  . 
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So let f(1+I) = x 

Let y ϵ M. Now, f is onto, so there exists r+I ϵ R/I such that f(r+I) = y. 

  f(r (1+I)) = y   r f(1+I) =  y   rx = y. 

Hence y ϵ M     y = rx ϵ Rx   M Rx. 

Again x ϵ M     Rx   M. 

Hence, M = Rx 

  M is a cyclic module. 

6.4.9. Theorem. Let R be a ring with unity and M be an R-Module. Then the following conditions are 
equivalent: 

(i) M is a simple R-module. 

(ii) Every non-zero element of M generates M. 

(iii) RM I  where I is a maximal ideal of R. 

Proof. (i)  (ii) 

Let M be a simple R- module. Then, {0} and M are the only submodules.  

Let x ≠ 0 ϵ M. Since 1 ϵ R and 1x = x ≠ 0, therefore x ϵ Rx = N = < x > 

Now, N is a non zero submodule of M and M is simple, so N = M M = Rx, that is, every non zero 
element  of M generates M. 

(ii)  (i) 

Suppose that M is generated by every non zero element of M. So let N ≠ {0} be a submodule of N. Take 
0 ≠ x ϵ N. Then, by the given condition M = Rx 

Now, x ϵ N   Rx  N, that is, M   N. Also, NM   M = N. 

Thus the only non zero submodule of M is M itself. Therefore M must be simple. 

(i)  (iii) 

Let 0 ≠ x ϵ M then N = Rx is a non zero submodule of M, since M is simple so N = M, that is, M = Rx. 

Define a map f : R→ Rx = M by f(r) = rx, for all r ϵ R 

It is easy to see that f is an onto homomorphism (as proved in previous theorem). Then by Fundamental 
Theorem of Homomorphism for modules, we have  

ker
R Mf   

Let I = ker f. Then, I is a module and R MI   . 
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We shall prove that I is maximal ideal of R.  

Suppose J is a left ideal of R such that I  JR . Now J
I  is a submodule of R

I  

Since R MI    and M is simple, therefore, R
I  is also simple. But then either J

I  is zero submodule or  

J
I =  R

I , that is, J
I =  {I} or J

I =  R
I . 

  J = I or J = R. 

Hence, I is a maximal left ideal of R. 

(iii)  (i) 

Suppose RM I  where I is a maximal ideal of R. 

Now, I is a maximal left ideal of R   I ≠ R. 

Now 1 ϵ R   1+I ϵ R
I  and 1+I ≠ I (zero of R

I ) 

By definition, 

      1(1+I) = 1 1+I = 1+I ≠ I   R(1+I) ≠ I   R( R
I ) ≠ I   RM ≠ {0} 

Let N be a submodule of M. Since RM I , so there exists some isomorphism : RM I  . Then 

(N) is a submodule of  R
I  and precisely of the form J

I  where J is a left ideal of R containing I. 

Now I is maximal left ideal of R and I  JR. 

  either J = I, then J
I  = I = zero element of R

I . 

 (N) = {I} 

But   is one one N = {0} 

If J = R, then  (N) = R MI  N = M 

Hence {0} and M are the only submodules of M. 

Therefore, M must be simple. 

6.4.10. Definition. Let M be an R-module and N be a submodule. We say that N is a direct summand of 
M if there exists another submodule 'N  of M such that 

M = 'N N  . 
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6.4.11. Theorem. Let M be an R-module and N be a submodule of M such that M
N  is a free R-module 

then N is a direct summand of M. 

Proof. Let {x N}   be a basis of M
N  over R, where x M    . Since a basis is linearly 

independent, therefore this basis will not contain zero element.  

Thus, x N N      , that is, x N     . 

Let B = { }x M    and 'M x 
 , that is, 'M  is a submodule of M generated by B. We shall 

prove that M = 'N M  

Let x ϵ M, then x + N ϵ M
N . Now {x N}   is a basis of M

N , so there exists r1, r2, …,  rn ϵ R such 
that  

x+N = 
1 21 2(x N) (x N) . . . (x N)

nnr r r         

          = 
1 21 2( x N) ( x N) . . . ( x N)

nnr r r         

      = 
1 21 2( x x . . . x ) N

nnr r r       

     = 
1

i

n

i
i

r x N


  

1

n

i i
i

x r x N


    

Let 
1

,
n

i i
i

x r x y y N


    
1

n

i i
i

x y r x N M


     . 

Thus M = N + M' . Let Z ϵ N ∩M', then Z ϵ N & Z ϵ M' . Now Z ϵ M'  =<B> 

1 21 2 ... ,
nn iZ t x t x t x t R         

1 1
Z + N = N ( N)

i i

n n

i i
i i

t x t x 
 

      

1
( N) Z + N = N

i

n

i
i

t x


   [ Z N] . 

Since {x N}  is a basis of M
N , therefore, it  = 0 1i i n    

But then 
1

Z = 0
i

n

i
i

t x


  N M'   = {0} 

Now it is clear that M=N M' , that is, N is direct summand of M. 



92 Modules 

 

6.4.12. Theorem. Let M1, M2 be free submodules of M such that M1 + M2 = 1 2M M , then M1+M2 is 
also a free R-module. 

Proof. Now M1 is a free R-submodule of M, so M has a basis say 1{x } Mi i I  . 

Similarly, M2 has a basis say 2{y } Mj j J   

Let B = {x } {y }i i I j j J   

Then, B  M1+M2    [ 1 2 1 2M ,M M +M  ] 

Let x ϵ M1+M2, then x = x'+ y'  where 1x' M  and 2y' M . Now {x }i i I is a basis of M1 over R. 

x' is a linear combination of finite number of elements, say x1, x2, . . ., xm, that is, 

 
1

x'= ,
m

k k k
k

r x r R


 . 

Similarly, there exist elements y1, y2, . . ., yn such that  

 
1

y'= ,
n

t t t
t

s y s R


  

Therefore, 
1 1

' ' .
m n

k k t t
k t

x x y r x s y
 

      

 1 2M +M  is generated by B. 

Next, suppose B = {z }k k K . Let r1, r2, . . ., rn be such that 
1 2 nk k k1 2 nr  r  . . . + + rz + z z =0 , iz R . 

Since ‘+’ is commutative, we may assume that 
1 2k k k  . . . , z , z , z {x }

m i i I  and  

 
m+1 m+2k k k  . .z ,  . , z , z {y }

n j j J . 

Hence, 
1 2 m+1 m+21 2 m+1 m+ k2k k k k kr  r  . .z + z + z = . + r r  r  . . -( z + z + z . + r )

m nm n . 

1 21 2k k kr  r  . . . + rz + z + z
mm  ∈ M1 and 

m+1 m+2m+1 m+2k k k-( z + z +r  r  . . .  r z )+
nn  ∈ M2. 

Hence, 
1 2k k k 11 22r  r  . .z + z + z . + r M M

mm    = {0}, that is, 
1 21 2k k kr  r  . . . +z + +  rz z =0

mm . 

Similarly 
m+1 m+2m+1 mk k k+2z + z +r  r  . . . + r z

nn  = 0. 

Since {x }i i I and {y }j j J  are linearly independent. It follows that ri = 0, 1 ≤ i ≤ n 

Hence B is linearly independent. 

From this it follows that B is a basis for M1 + M2 = 1 2M M  over R. 

Hence M1 + M2  is a free R-modules. 
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6.4.13. Theorem. Let R be a commutative ring with unity and e be an idempotent (that is, e2  = e and  
e ≠ 0, e ≠ 1). Let M = Re, then M is not a free R-module. 

Proof. Since e ≠ 0, e ≠ 1. Thus {0}  MR. 

Suppose M is a free R-module. Since M = R e, so M is finitely generated R-module. Thus every basis of 
M has finite number of elements. Let {x1, x2, . . ., xm} be a basis of M. now xi∈ M = R e. 

 i i ix = re , 1 i m, r R    . 

Since {x1, x2, . . ., xm} is a basis of M, so each xi ≠ 0 ir 0   

Now, r2x1+(-r1)x2 = r2r1e + (-r1)r2e 

          = r2r1e - r1r2e = 0  [R is commutative]  

Now - 1 2r 0, r 0    x1 and x2 are linearly dependent, a contradiction. Therefore, the basis has only 
one element, namely x1 = r1e. 

Now, e ≠ 0, 1   1 – e ≠ 0.  1-e ∈ R, so (1 - e)x1 = (1 - e)r1e = r1(e – e2) = r1(e - e) = 0. 

But 1 – e ≠ 0 and so x1 is linearly dependent, again a contradiction. 

Thus, M is not a free R-module. 

6.4.14. Theorem. Let N be a finitely generated free module over a commutative ring R. Then all its 
basis are finite.   

Proof. Suppose N is generated by  {x1, x2,…, xn} and i{ }ie   be a basis of N and let us denote this basis 
by B. We shall prove that  B is a finite set.  

Now, xi   N and B is a basis of N, so  there exists a finite subset Bi of B such that xi is a linear 
combination of elements of Bi with coefficients in R. 

Let S = 
  1

B
n

i
i 
 , then clearly S is finite since each Bi is finite.   

Now, B is linearly independent, so S, being a subset of B, is also linearly independent.  Let x   N be 
any arbitrary element, then 

x  =  r1 x1+ r2 x2 +… + rn  xn, ri   R 

But each xi is a linear combination of elements of Bi, so x is a linear combination of elements of S. 
Hence S generates N. Thus, S is a basis of N. Now S   B and B is also a basis, so we must have  

S = B. herefore, B is finite since S is finite. 

6.4.15. Theorem. Let N be a finitely generated free module over a commutative ring R. Then all basis 
of N have the same number of elements.  

Proof. Suppose N has two basis containing m and  n  elements respectively. We shall prove that  m = n.  
Since N  is a free  module, so we must have (by a previous theorem), that N   R m  and N    Rn  
   R  m    Rn .   
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Let, if possible, m < n. 

Let   : R m  Rn  be an isomorphism and since    is one-one and onto, so    is invertible and let   = 
 –1, then   : Rn  R m  is an isomorphism. 

Let {e1, e2,…, en} and { f1, f2,…, fn} be standard basis of mR  and nR  respectively. 

Now Rn
ie  , 1 i m, so let us write 

 (ei) = a1i f1 + a2i f2 + … + ani fn,      1  i   m 

that is,  we have 
 (e1)  =  a11 f1 + a21 f2 + … + an1 fn 

 (e2)  =  a12 f1 + a22 f2 + … + an2 fn 

.                          .                       . 
 (em)  = a1m f1 + a2m f2 + … + anm fn 

Then, matrix of   = A =  

Again,  (fi)   mR , 1  j   n, so let us write  

 (fi) = b1j e1 + b2j e2 + … + bmj em 

that is, we have  
 (f1) = b11e1 + b21e2 + … + bm1em. 

 (f2) = b12e1 + b22e2 + … + bm2em 

: : : 
 (fn) = b1ne1 + b2ne2 + … + bmnem 

Matrix of   = B = 

11 12 1

21 22 2

1 2 .

     
     

               
     

m

m

m m mn m n

b b b
b b b

b b b


 
  
 
 

 

  
 

Now, we see that   : mR  nR ,   : nR  mR  implies that    : mR  mR  and    is identity 
mapping on mR  because   =  –1. 

So matrix associated with the mapping    is identity matrix, but matrix of    is also given by  BA.  

Hence, BA = Im = Identity matrix of  mm. 
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that is,  

  
  1

1     if       
   =   

0     if     

m

ik kj
k

i j
b a

i j


 

    (1) 

Similarly, AB  = In, implies 

  1

1     if       
   =   

0     if     

m

ik kj
k

i j
a b

i j


 

     (2) 

Let A = [A O] and B= 
B
O
 
 
 

 be  nn augmented matrices, where each of the O blocks is a matrix of 

appropriate size, that is, 

 
Form these two matrices we note that  

 
So, we have 

 det(AB) = det (In) = 1    and  det (BA) = det
I       0
0        0

m 
 
 

 = 0. 

         det (AB)     det (BA)          …(3) 
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But  A and B are nn matrices over a commutative ring so we must have det(AB) = det(BA), which 
is contradicted  by (3). 
Hence  m   n. 

Similarly n  m. 

So, m = n, that is, all basis of N have the same number of elements. 

6.4.16. Rank. The number of elements in any basis of a finitely generated free module N over a 
commutative ring R with unity is called the rank of N. 

6.4.17. Theorem.  Every finitely generated module is a homomorphic image of a finitely generated free 
module. 

Proof. Let  N   be an finitely generated  R-module with generators   x1, x2, …, xn.   

Let  e1  =  (0, 0, …, 1, 0, . . ., 0)  be the  n-tuple with all entries  0  except the  ith place, where the entry is  
1.  Then, we know that {e1, e2, …, en}  are linearly independent over  R  and  generated a free module 

nR .  Hence  nR   is a finitely generated free module.  We shall prove that N is homomorphic image of
nR .  We define a mapping 

     :   nR N   by setting  
  1   1

        
n n

i i i i
i i

re r x
 

   
 
     

(i)  is well-defined. Let   x   =  
  1

 
n

i i
i

re

   and    y  =   

  1

'  
n

i i
i

r e

 be two elements of Rn  such that x = y,that 

is 
  1

'( )   0
n

i i i
i

r r e


                    '   0i ir r  ,  1 i n        [Since 'ie  are L. I.] 

   '   i ir r ,  1 i n     
  1   1

'    
n n

i i i i
i i

r x r x
 

     ( )     ( )x y   . 

(ii)  is homomorphism.    

Let x = 
  1

 
n

i i
i

re

 , y = 

  1

'  
n

i i
i

r e

  and r   R, then 

  (x + y) = 
  1   1

' '(  )       (  ) 
n n

i i i i i i
i i

r r e r r x
 

    
 
       

  = 
  1   1

' 
n n

i i i i
i i

r x r x
 

   =  (x) +  (y) 

and   (rz) = 
  1

 
n

i i
i

rre


 
 
 
  = 

  1
( )

n

i i
i

rr x r x


  . 
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(iii)  is onto. Let m = 
  1

 
n

i i
i

r x

  be any arbitrary element. Then riR and consider the element  

x=
  1

 
n

i i
i

re

    Rn . Then  (x) = 

  1
 

n

i i
i

re


 
 
 
  = 

  1
 

n

i i
i

r x

  = m. So, x is pre-image of m. Hence   is onto 

and so,  ( Rn ) = N, that is, N is homomorphic image of nR  which is a finitely generated free-module. 

6.4.18. Theorem. Every finitely generated module is isomorphic to a quotient group of a finitely 
generated free module. 
Proof. Proof can be obtained by using Theorem 6.4.14 and then using fundamental theorem of module 
homomorphism 

   R ker      M.n    

Thus, N is isomorphic to a quotient group of finitely generated free-module. 
6.4.19. Fundamental Structure Theorem (or Decomposition Theorem) of finitely generated 
modules over Principal Ideal Domain. 
Let  R  be a PID and let N be any  finitely generated  R-module, then  

N   1 2R R R  R R ...  R Rs
ra a a     

a direct sum of cyclic modules, where  ' sia  are non zero non-units and 1i ia a  , i =  1, 2,.., r 1. 

Proof. Since N is a finitely generated R-module and we know that every finitely generated module is 
isomorphic to a quotient group of a finitely generated free module, so  

 M     R Kn . 

Now, since Rn  is a free R-module, where R is a PID and K is a sub module of Rn , so we must have  

K    Rm , where m   n. 

Let   be this isomorphism from R m  to K, that is, K  =  ( R m ). Let { e1, e2, …, em} be a basis of R m .   
Let us write 

    

11

21
1

1

( )    
  

n

n

a
a

e R

a

 
 
   
 
 
 


 

                                           
  


 

    

1

2( )   
  

m

m n
m

nm

a
a

e R

a
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Then,  ( R m ) = A R m , where A = (aij) is an nm matrix. We choose invertible matrices P and Q of 
order  nn  and  mm  respectively such that 

PAQ = diag.((a1, a2, …, ak, 0, 0, …, 0), where 1 2 ... ka a a . 

Then we have 
n

1

2

 M     R K      R (R )        R AR        R PAQR

                                     O
             
                   

                              
                                 0
  

n m n m n m

n
k

a
a

R a

   






  1

      
 

      O                          
                                           
                                                   0

R R ... R R

R
R

R

a

 
 
 
   
   
   
   
   
   
     
 
 
 

    







 2 k

1 2
( -- ) times

R ... R
 R R R R ... R R R ... Rk

n k

a a
a a a

 

      

 

By deleting the zero terms on R.H.S., if any (corresponding to those i'sa  that are units) and renumbering 
if necessary we obtain 

1 2 rM    R R R R ... R R R sa a a     . 

6.4.20. Application to finitely generated abelian groups. Since the ring of integers   is a PID and 
any abelian group is a module, so by above theorem it follows that: 

Let A be a finitely generated abelian group, then 
s

1 rA    ...a a         

where ‘s’ is a non-negative integer and i
'sa  are non-zero  non units in    s.t.  1 2 ... ra a a . 

6.5. Torsion Element. Let M be an R-module, then an element m of  M is said to be a torsion element if 
rm=0 for some nonzero element r ∈ R. The collection of all torsion elements is denoted by Mt or 
Tor(M), so 

Tor(M) = {m ∈ M : rm=0 for some non-zero r ∈ R}. 

Also, it is known as Torsion part of the module. It is the largest torsion submodule of M. 

65.1. Exercise. Prove that if R is an integral domain, then Tor(M) is a submodule of M. 

6.5.2. Torsion module. A module is said to be a torsion module if its every element is a torsion element. 
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6.5.3. Torsion free moldule. A module having no non-zero torsion elements is called a torsion-free 
module or we can say that the only torsion element in a torsion-free module is the zero element, which 
means that every non-zero element of this module is linearly independent. 

Now according to the definition of Torsion part of a module, we can say that M is torsion free if its 
torsion part Mt is {0}. 

6.5.4. Proposition. For any module M over a commutative integral domain R, the quotient module 
M/Mt is a torsion free module. 

Proof. Let x + Mt ∈ M/Mt be any arbitrary element. If x + Mt is a torsion element of M/Mt, then r.(x + 
Mt) = 0 for some non-zero r ∈ R and, therefore, r.x ∈ Mt. So by definition of torsion part of M, there 
exists some non-zero element a ∈ R such that a(r.x) = 0. Then, (ra).x = 0, since R is an integral domain 
and a, r are non-zero, so ra is also non-zero element of R. Therefore, x is a torsion element of M and thus 
x ∈ Mt. Hence x + Mt = Mt , which is zero element of M/Mt. Hence zero element is the only torsion 
element of M/Mt and so M/Mt is a torsion free module. 

6.5. Check Your Progress. 

1. Let M1, M2 be free R-module. Then 1 2M=M ×M  is also a free module. 

2. Q is not free Z-module. 

Answers. 

1. First prove 1 2 1 2M ×M M M  . Since direct sum of two free modules is again free module, the result 
follows. 

2. Let M = Q. We know that every abelian group can be treated as Z-module. Thus, Q is a Z-module. 
Suppose M is a free Z-module. Let λ{x }  be a basis of M over Z. Let x1, x2∈ λ{x } . Suppose 

1 2
1 2

1 2

m mx = , x =
n n

 where m1, m2, n1, n2∈ Z and n1 ≠ 0, n2 ≠ 0. 

Now (n1m2)x1 + (-n2m1)(x2) = 1 2
1 2 2 1

1 2

m mn m n m
n n

    = 1 2 1 2m m m m  = 0, 1 2 2 1n m 0, n m 0.    Thus x1, 

x2 are linearly dependent, a contradiction. Hence, basis of M contains only a single element, say x. 

Suppose x =  1

1

m
n

, where m1, n1∈ Z. and n1 ≠ 0.  

Now {x} is a basis of M over Z. Thus, every element of M is of the form lx, l ∈ Z. 

Take a prime p such that p > n1 

Now, 1
p
∈ M = Q 

1

1

1 ml
p n

    for some l ∈ Z. 
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1 1n lm p  1p n , a contradiction. ( p > n1) 

Hence, M = Q is not a free Z-module. 

6.6. Summary. In this Chapter, we discussed about various properties of modules, structures that 
become module, their direct sum, rank etc. Also, it was derived that for a finitely generated free module 
over a commutative ring all basis have same number of elements. 
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7 
NOETHERIAN AND ARTINIAN MODULES 

Structure 

7.1.  Introduction. 

7.2.  Noetherian and Artinian Module. 

7.3.  Hilbert Basis Theorem. 

7.4.  Nil Ideal. 

7.5.  Ring of Homomorphisms. 

7.6.  Radical ideal. 

7.7.  Check Your Progress. 

7.8.  Summary. 

7.1. Introduction. In this chapter the concept of ascending and descending sequences of submodules, 
definitions, examples and properties of Noetherian and Artinian Modules are given. Further nil ideal and 
nilpotent ideals are discussed in detail.  

7.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Noetherian Module and equivalent conditions for a module to be Noetherian. 
(ii) Artinian Module and equivalent conditions for a module to be Artinian. 
(iii) Hilbert Basis Theorem. 
(iv) Wedderburn Artin Theorem. 
7.1.2. Keywords. Noetherian Module, Artinian Module, Nil Idels, Finitely Generated Module. 

7.2. Noetherian and Artinian Modules. Let M be a left R-module and {Mi }i ≥ 1 be a family of 
submodules of M 
1) The family {Mi }i ≥ 1 is called an ascending chain or sequence if  

1 2 3 1... ...n nM M M M M        

2) The family {Mi }i ≥ 1 is called a descending chain or sequence if  

1 2 3 1... ...n nM M M M M        
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7.2.1. Noetherian Module. 

An R-Module M is called Noetherian if for every ascending chain  

1 2 3 1... ...n nM M M M M        

of submodules of M, there exists a positive integer K such that 

MK = MK+1 = MK+2 = . . . 

that is, MK = MK+i,  for all i ≥ 0. 

-OR- 

Every ascending chain of submodules of M becomes stationary after a finite number of steps. 

-OR- 

Every properly ascending chain 1 2 3 ...M M M
  
    of submodules of M terminates after a finite number 

of steps, that is, every properly ascending chain of sub modules of M is finite. 

7.2.2. Theorem. For an R-module M the following conditions are equivalent: 

(i) M is Noetherian. 

(ii) Every non-empty family of R-modules has a maximal element. 

(iii) Every sub-module of M is finitely generated. 

Proof :  (i)   (ii) 

Suppose M is Noetherian R-module and let   =  M 
 be a non-empty family of sub-modules of M. 

Since the family   is non-empty so let 
1

M  be any member of  . 

If 
1

M  is maximal element, then we are done, otherwise there exist 
2

M     such that 

1
M  2

M . 

Again, if 
2

M  is maximal, then we are through, otherwise there exist 
3

M     such that 

2
M   

3
M . 

Now,   has no maximal element is equivalent to saying that there exists an infinite ascending chain  

1
M    

2
M    

3
M   ... 

of sub-modules of M, which is a contradiction as M is assumed to be Noetherian. Hence the family   
must have a maximal element. 

(ii)   (iii) 
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We are given that every non-empty family of sub-modules of M has a maximal element. Let N be a sub-
module of M and we shall prove that N is finitely generated. 

Let, if possible, N is not finitely generated. For any positive integer k let a1, a2,…, ak   N.  

Then N   < a1, a2,…, ak >. Choose ak+1   N such that ak+1   < a1, a2,…, ak >. 

We then obtain an infinite properly ascending chain 

< a1 >  < a1, a2 >  ...  < a1, a2,…, ak > ... 

of submodules of M. 

Let us denote Nk = < a1, a2,…, ak >, then N1  N2 … Nk  ... 

Let family of all these sub-modules be  , that is,   = {Nk}, k   1, then by the given hypothesis   has 
a maximal element, say L. 

Now, L      L = Nm for some m. But L = Nm  Nm +1 so L is not a maximal element, a 

contradiction. Hence N must be finitely generated. 

(iii)   (i) 

Suppose every submodule of M is finitely generated. We shall prove that M is Noetherian. 

Let N1   N2   N3   ...  Nk   Nk+1  ... be an ascending chain of sub-modules of M. 

Consider N = Ni
i
 . We claim that N is also a sub-module of M. 

Let x, y   Ni
i
  and r   R. Then x   Nr and y   Ns for some integers r and s.  

Since either Nr   Ns or Ns   Nr, therefore both x and y lie in one sub-module Nr or Ns, and hence x y 
and rx lie in same sub-module. However, both Nr and Ns are subsets of N, so x y, rx   N, and hence N 
is a submodule of M. 

Now, by (iii), N is finitely generated. So there exist elements a1, a2,…, an   N such that  

N = < a1, a2,…, an >. Now for each j, 1  j   n, aj N = Ni
i
  

   aj 
j

N  for some natural number j  

Let k = max  1 2 ,   ,..., n   , then clearly aj Nk, 1   j   n that is,,  a1, a2,…, an Nk 

But N = < a1, a2,…, an >, so N is smallest submodule containing a1, a2,…, an .  

This implies N   Nk. . Also Nk   N.  Hence N = Nk  and so Nk = Nk +1 = Nk +2 = ..., therefore, M is a 
Noetherian R-module. 
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7.2.3. Definition. If the left R-module M is noetherian then M is called a left-Noetherian module. 
Similarly, if a right R-module M is Noetherian then M is called a right Noetherian module. 

7.2.4. Finitely Co- generated Module. 

Let M be a left R- module then M is called finitely co- generated if for any non- empty family { }M  £ 

of sub modules of M, having {0} intersection, that is, if {0}M


 . Then, there exists λ1, λ2, …, λn  

  such that 
1

{ 0 }
i

n

i

M


 . 

7.2.5. Artinian Module. 

 Let M be a left R- module. M is called left- Artinian if for every decreasing chain  

 …	ܯ	…	ଶܯ		ଵܯ

we have ܯ ൌ ାଵܯ ൌ ⋯ ൌ	ܯା	 ൌ ⋯	for some k  N, that is, have ܯ ൌ  ,ା for all i  0, that isܯ	
every descending chain of sub modules of M becomes stationary after a finite number of steps. 

OR 

Every properly descending chain of  1 2 3... ...nM M M M
   
     of submodules of M is finite. 

OR 

Every properly descending chain of sub modules of M terminates after a finite number of steps. 

7.2.6. Theorem. For an R-module M the following conditions are equivalent: 

(i) M is Artinian. 

(ii) Every non-empty family of sub-modules of M has a minimal element. 

(iii) Every quotient module of M is finitely co-generated. 

Proof. (i)   (ii) 

Let us suppose that M is Artinian and let   =     M   
 be a non-empty family of sub – modules of M. 

We shall prove that   has a minimal element. Now       so there exist 
1

M    , then either 
1

M  is 

a minimal element of   or there exists 
2

M      such that 
1

M   
2

M . 

Again, either 
2

M  is a minimal element of   or there exists 
3

M      such that 

2
M   

3
M . 

If this process continues indefinitely (that is,   has no minimal element) then we get an infinite 

properly descending chain 
1

M   
2

M   
3

M ... of sub-modules of M, which is a contradiction since M 

is given to be Artinian. Hence   must have a minimal element. 
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(ii)    (iii) 

Let us suppose that every non-empty family of sub-modules of M has a minimal element. We shall 
prove that every quotient module of M is finitely co-generated. Let N be a sub-module of M. Consider 
the quotient module M N . 

Let     M N   
 be a family of sub-modules of M N  such that  

  
M N

  
  = {N} 

Now,  {N} =  
  

M N
  
  = 

 
M N



 
 
 
      M


  = N     (1) 

Let   =     M   
, where M ’s are sub-modules of M and let  

  = A : A  is the intersection of finite number of sub-modules of  M  in    

Then clearly       that is,, M        . 

Now   is a family of sub-module of M so by the given condition (ii) it must have a minimal element 
say, A. 

Then,  A = 
1

M    
2

M ...  M
n
,  i    

Let M    be any member, then A M  = M   
1

M    
2

M    ... M
n   , being finite 

intersection of members of  . 

Now A   M   A. But A is minimal element of   so A M = A  

      A   M          

     A   M

  = N   [By (1)]  

Again,  N = M

   

 = 1
M = A

i

n

i
 . Hence A = N = 

 = 1
M

i

n

i
  

Now,    i
 = 1

M N
n

i
  = 

 = 1
M N

i

n

i


 
 
 
  = N N  = {N}. 

Hence, there exist a finite sub-family    
 =1

M N    of   M N
i

n

i  
 such that 

 
 = 1

M N
i

n

i
  = {N} 

Hence every quotient module of M is finitely co-generated. 

(iii)   (i) 
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Let us suppose that every quotient module of M is finitely co-generated and shall prove that M is 
Artinian. Let M1   M2   ...Mk   Mk +1  ... be a descending chain of sub-modules of M.  

Let N = Mi
i
 . Then N is a sub-module of M and N   Mi for all i. Consider the family  M Ni i

 of 

sub-modules of M N . We see that  

 i i
i i

M N   =  M N  = N N  = {N} 
 
 

   

Since by the given condition (iii), M N  is finitely co-generated therefore there exists a finite sub-

family, say,  
 = 1

M N
i

r

n i
 of  M Ni i

 such that 
 = 1

M N
i

r

n
i
  = {N}  

Let k = max. {n1, n2,...,nr} then   

  
  1

M     M
i

r

n k
i 

 ,  

since the chain is descending. 

Now  {N} =  
  1   1

M N   M N   M N
i i

r r

n n k
i i 

 
  

 
   and so Mk = N.  

But then N M  M   Nk j k   gives that Mk = Mk +1 = Mk +2 = ... 

Hence, the R-module M is Artinian. 

7.2.7. Proposition. Let M be a left R-Module  

1)  If M is Noetherian then every submodule and factor module of M is also Noetherian. 

2)  If N is a submodule of M such that bot h N and ܯ ܰൗ  are Noetherian then so is M. 

Proof. 1) We know that “a R-module M is Noetherian iff every sub-module of M is finitely generated.” 

(i) Let N be a sub-module of M then N must be finitely generated. Now let N1 be any sub-module of N 
then it is also finitely generated as every sub-module of a finitely generated module is finitely generated. 
Hence N is Noetherian. 

(ii) Let M N  be any quotient module of M. To prove M N  Noetherian, we shall prove that every sub-
module of M N  is finitely generated. So let A N  be any submodule of M N , where A is a sub-
module of M. Now A is a sub-module of M and M is Noetherian, therefore A is finitely generated.  

Suppose A = < x1, x2,...,xn > .We claim that A N  = < x1 + N, x2 + N, ..., xn + N >  

Let x + N   A N  be any element. 

Then, x   A   x = r1x1 + r2 x2 +...+ rn xn, ri R  
     x + N = (r1x1 + r2 x2 +...+ rn xn) + N  
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               = r1 (x1+N) + r2 (x2 +N) +...+ rn (xn + N)  

Hence A N  = < x1+N, x2 +N, ...,xn+N >, that is, A N  is finitely generated. Therefore, M N  is 
Noetherian. 
2) To prove that M is Noetherian, we shall prove that every sub-module of M is finitely generated. So, 
let A be any sub-module of M. Then A + N is also a submodule of M containing N. Therefore A+N

N  

is a sub-module of M N . Since M N  is Noetherian, therefore, A+N
N  must be finitely generated. 

Now, we know that  A+N
N    A A N  

     A A N  is also finitely generated. 

Also, A N being a sub-module of Noetherian R- module N, is also finitely generated. 

Suppose AN = < x1, x2,..., xm > and A A N  = < y1 + AN, y2 + AN,..., yn + AN >, 

where xi, yi A. 
We claim that A = < x1, x2,...,xm, y1, y2,...,yn >  
Let x   A be any arbitrary element, then  

x + AN  A A N and A A N  = < y1+AN, y2 + AN,...,yn+AN >  

so  x + AN =  
  1

A N ,  R
n

j j j
j

r y r


    

        = 
  1

 A N
n

j j
j

r y


    

     
  1

  A N  A N
n

j j
j

x r y


 
     

 
    

     
  1

A N
n

j j
j

x r y


   . 

Since A N = < x1, x2,...,xm >, so 
  1

 
n

j j
j

x r y


   = s1x1 + s2x2 +...+ smxm,      siR 

   
  1   1

    
n m

j j i i
j i

x r y s x
 

    

    A = < x1, x2,...,xm, y1, y2,...,yn > 
Hence A is finitely generated and therefore M is Noetherian R-module. 

7.2.8. Proposition. Let M be a left R-module and N be a sub module of M. Then M is Artinian iff both 
N and ܯ ܰൗ  are Artinian. 

Proof. First suppose that both N and ܯ ܰൗ  are Artinian. 
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We shall prove that M is Artinian. 

Let A1   A2  ...   An   An +1 be a descending chain of sub-modules of M. We shall prove that this 
chain becomes stationary after a finite number of steps. 

Now, Ai is a sub-module of M and N is also a sub-module, so Ai + N is also a sub-module of M and N 
  Ai + N for all i.  

Since, Ai   Ai +1 so Ai + N   Ai+1+ N for all i.  

   iA N N    +1A N Ni  , 

where A N Ni   is a sub-module of M N  for all i. 

Hence, we have a descending chain 1A N N    2A N N   ... A N Nn   ... of submodules of 
M N . 

Since M N  is Artinian, so there exist a positive integer r such that  

    +1  +2A N N = A N N =A N Nr r r   = ...  

that is,  +iA N N  = A N N    i 0r r     

    r r + iA + N  = A N     i 0         (1) 

Now, again Ai N is a sub-module of N and since Ai   Ai+1. 

We have 1i iA N A N    for all i. Hence, we have a descending chain  

A1N   A2 N  ...An N  ...  

of sub-modules of N. However, N is artinian, so there exist a positive integer s such that 

As N = As +1N = As +2 N = ... 

that is,,  AsN = As+i N      for all  i   0.       (2)  

Let k = max{r, s}, then by (1) and (2), we must have 

  Ak +N = Ak + i + N  for all  i   0      (3) 

and   AkN = Ak+i N  for all  i  0.     (4) 

We claim that Ak = Ak + i  for all   i  0. 

Let x   Ak be any arbitrary element. Then xAk Ak +N = Ak+i + N  [By(3)] 

     x = y + z, for some y   Ak+i, z   N  

      x y = z N. 
Now, x   Ak, y Ak+i Ak  x y Ak 

Hence    x y AkN = Ak+i N      [By (4)]  
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      x y   Ak+i   N Ak+i  

      x y   Ak+i and yAk+i  

      x y + y = x Ak+i. 
So, Ak Ak+i, also Ak+i   Ai. 

Hence, we have Ak = Ak+i  for all  i 0. 

Therefore, the considered chain of sub-modules of M becomes stationary after a finite number of steps. 
Hence M is Artinian. 

Conversely, suppose that M is an Artinian module. 

(i) Let N be any sub-module of M. We shall prove that N is Artinian. 

Suppose that N1 N2   N3  ...  Nk   Nk +1  ... be a descending chain of sub-modules of N. Since 
sub-modules of N are also the sub-modules of M, it follows that above chain is a descending chain of 
sub-modules of M. Since M is Artinian, therefore, there exists a positive integer k such that  

   Nk = Nk +1 = Nk +2 = … 

Hence N is Artinian. 

(ii) Let M N  be any quotient module of M. To prove M N  Artinian, let us consider a descending chain 
of sub-modules of M N , that is, 

    1M N  2M N  3M N   ... M Nk  ... 

Here, Mi are sub-modules of M and since M Ni   +1M Ni   , so Mi   Mi +1. 

Thus, we have a descending chain M1   M2  ...  Mk   ... of sub-modules of M. Since M is Artinian, 
so there exists a positive integer k such that Mk = Mk +1 = Mk +2 = ... and then, we have  

   M Nk  =  +1M Nk  =  +2M Nk  = ... 

Hence, M N  is a Artinian R-module. 

7.2.9. Remark. Since every homomorphic image of a module is isomorphic to some quotient module. 
Thus, if the module is Noetherian (Artinian), then its homomorphic image is also Noetherian (Artinian). 

7.2.10. Result. Let M1 and M2 be R-modules and N1 and N2 be submodules of M1 and M2 respectively. 
Let M = M1M2 = {(x, y) : 1x M , 2y M }. Define addition and scalar product as 

(x1,y1) + (x2,y2) = (x1 + x2, y1 + y2)  

r(x, y) = (rx, ry). 

Then, M is a module with respect to this addition and scalar multiplication. 

Also, let N = N1N2. Then, N is a submodule of M. Consider the factor module  
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1 2

1 2
.M MM

N N N
   

Consider the quotient module 1

1

M
N  and 2

2

M
N  and let 1 2

1 2

M M
N N be their direct product. Define a 

map 1 2
1 2

1 2
: M MM M N N     by 

1 2( , ) ( , )x y x N y N    . 

It is easy to see that   is the homomorphism of left R-modules. 

Now,   is onto. For, let 1 2
1 2

1 2
( , ) M Mx N y N N N    , where 1x M  and 2.y M  Therefore, 

1 2( , )x y M M   and 1 2( , ) ( , )x y x N y N    . 

Also, let 1 2( , ) .x y Ker M M    Then, 

1 2
1 2

1 2
( , ) zero of ( , )M Mx y N NN N     iff 1 2 1 2( , ) ( , )x N y N N N    

iff 1 1x N N   and 2 2y N N   iff 1x N  and 2y N  

1 2.Ker N N    

Hence, by fundamental theorem of homomorphism 1 2 1 2

1 2 1 2
.M M M M

N N N N
    

Generalising this we get 

1 2 1 2

1 2 1 2

... ... ....
n n

n n

M M M MM M
N N N N N N

          

Remark. If M1 is a left R-module, then 1

1
{0}.M

M   

7.2.11. Proposition. Let M1, M2, ..., Mk be left R-modules. 

(i) If each of Mi is Noetherian, then so is 1 2 ... kM M M   . 

(ii) If each of Mi is Artinian, then so is 1 2 ... kM M M   . 

Proof. We shall prove the result by induction on k. 

Suppose k = 2. We know that "If N is a submodule of M, then M is Noetherian iff both N and M/N are 
Noetherian." 

Now,      
1 2 1 2 2 2

2
1 1

{0} .{0} 0 0 0
M M M M M M MM M
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Since 2M  is Noetherian, therefore 1 2

1 {0}
M M

M


  is Noetherian.  

Now both 1 {0}M   and 1 2

1 {0}
M M

M


  are Noetherian, therefore, 1 2M M  is also Noetherian. 

Suppose k > 2 and the result holds for modules M1, M2, ..., Mk-1. 

Now 1 2 1... kM M M     is Noetherian and Mk is also Noetherian, therefore by above discussion 

1 2 ... kM M M    is Noetherian. Hence the Proof. 

7.2.12. Proposition. Let M1, M2, ..., Mk be Noetherian submodules of M, then 
1

k

i
i

M

  is also 

Noetherian. 

Proof. We know that finite direct product of Noetherian Modules is again Noetherian. Now, each of M1, 
M2,..., Mk is Noetherian, therefore, 1 2 ... kM M M    is Noetherian. 

Define a map 1 2
1

: ..  .
k

k i
i

M M M M


     by  

1 2 1 2( , ,..., ) ... , .k k i ix x x x x x x M       

Now,   is a homomorphism: 

Let 1 2( , ,..., )kx x x , 1 2(y , y ,..., y )k  1 2 ...  kM M M   . Then, 

 

1 2 1 2 1 1 2 2

1 1 1

1 2 1 2

(( , ,..., ) (y , y ,..., y )) ( y , y ,..., y )

( )

( , ,..., ) (y , y ,..., y ).

k k k k
k k k

i i i i
i i i

k k

x x x x x x

x y x y

x x x

 

 
  

    

   

 

    

and 1 2 1 2 1 2
1 1

(r( , ,..., )) (r , r ,..., r ) ( , ,..., ).
k k

k k i i k
i i

x x x x x x rx r x r x x x  
 

      

Hence,   is a homomorphism. 

  is onto: 

Let 1 2 ... kx M M M    . Then, x = x1 + x2 +...+ xk,  i ix M . 

Now, 1 2( , ,..., )kx x x  1 2 ...  kM M M    and 1 2 1 2( , ,..., ) ... .k kx x x x x x x       

Thus,   is onto. 

Hence, 
1

k

i
i

M

 is a homomorphic image of a Noetherian module 1 2 ... kM M M   . 



112 Noetherian and Artinian Modules 

 

Therefore, 1 2 ... kM M M    is Noetherian. 

Exercise. If the submodules 1 2, ,..., kM M M  are Artinian, then so is their sum. 

7.2.13. Left Noetherian Ring. Let R be a ring. R is called left Noetherian, if left R-module RR is 
Noetherian. 

7.2.14. Right Noetherian Ring. Let R be a ring. R is called right Noetherian, if right R-module RR is 
Noetherian. 

7.2.15. Noetherian Ring. If R is both left as well as right Noetherian, R is called Noetherian ring. 

7.2.16. Remark. Suppose R is a commutative ring, then it is clear that R is left Noetherian  

iff R is right Noetherian iff R is Noetherian. 

7.2.17. Artinian Ring. Let R be a ring. Then, 

(1) R is called left Artinian if Left R module RR is Artinian. 

(2) R is called right Artinian if right R module RR is Artinian. 

(3) If R is both left as well as right Artinian, R is called Artinian ring. 

(4) If R is a commutative ring, then it is clear that R is left Artinian iff R is right Artinian iff R is 
Artinian. 

7.2.18. Proposition. Let R be a right Noetherian ring and M be a finitely generated R-module, then M is 
also Noetherian. 

Solution. We know that finite direct product of Noetherian left R-Modules is again Noetherian, 
therefore finite direct product of RR 's is also Noetherian. 

Therefore, ( )...R R R nM R R R R       is Noetherian. 

Now, M is finitely generated R-module, thus there exist 1 2, ,..., nx x x M  such that 

1 2
1

, ,...,
n

i n
i

M Rx x x x


   

Now, ( )
1 2{( , ,..., ) : }n

n iR M r r r r R    is Noetherian R-module. 

Define a map : M M   by 

1 2 1 1 2 2( , ,..., ) ... .n n nr r r r x r x r x      

Then,   is a homomorphism: 

Let 1 2( , ,..., )nr r r M   and 1 2(s ,s ,...,s )n M  . Then, 
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1 2 1 2 1 1 2 2

1 1

1 2 1 2

(( , ,..., ) (s ,s ,...,s )) ( s , s ,..., s )

x x

( , ,..., ) (s ,s ,...,s ).

n n n n
n n

i i i i
i i

n n

r r r r r r

r s

r r r

 

 
 

    

 

 

   

Let Rr R , then 

1 2 1 2 1 2
1 1

( ( , ,..., )) ( , ,..., ) x ( , ,..., ).
n n

n n i i i i n
i i

r r r r rr rr rr rr x r r r r r r  
 

      

Hence,   is a homomorphism of left R-modules. 

Let x M , then, there exists 1 2, ,..., nr r r R  such that 
1

x
n

i i
i

x r


 .  

But then ( )
1 2( , ,..., ) n

nr r r R  and 1 2
1

( , ,..., ) x .
n

n i i
i

r r r r x


   

Hence,   is onto. 

Thus, : M M   is epimorphism that is, M is homomorphic image of M' and so, M is Noetherian. 

7.2.19. Exercise. Let R be a left Artinian ring and M be a finitely generated left R-module, then M is 
also Artinian. 

Proof. Proof of this exercise is similar to that of the above if we change Noetherian by Artinian. 

7.3. Hilbert Basis Theorem. Let R be a left Noetherian ring then so is the polynomial ring R[x] and 
conversely. 

Proof. Let the ring R be left Noetherian and let R[x] be the polynomial ring over R in the indeterminate 
x. 

We shall prove that every left ideal of R[x] is finitely generated as a left R-module. 

Let A be a left ideal of R[x]. 

If A = {0}, then clearly it is finitely generated left R[x] module. 

Suppose A  {0}. Let  

       Ik = { a R  : a is leading co-efficient of some polynomial of degree k in A} {0}. 

Here 0k  . We prove that Ik is left ideal of R. 

Clearly, I   as 0 kI . 

Let a, b kI . If a = b, then a - b = 0 kI . 

Suppose 0.a b a b     
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Then either 0a   or 0b  . 

If 0a  , then there exist f(x) = axk + a1xk-1 +... A . Now, 0 0a a    . 

Now (x) Af   and A is left ideal. 

(x) A a I .kf     

Similarly, if 0 kb b I   . 

(i) if 0b  , then ka b a I   . 

(ii) if 0a  , then ka b b I    . 

(iii) if 0a  , 0b   and 0a b  . Then,  

f(x) - g(x) = (a-b)xk + (a1-b1)xk-1 +... A , 

where g(x) = bxk + b1xk-1 +... A  

.ka b I    

Hence, Ik is a subgroup of R under addition. 

Let r R  and ka I . 

If 0ra  ., then kra I . 

If 0ra  , then 0a  . Now, [ ]r R R x   and ( )f x A  

( ) .rf x A   

Now, 1 1( ) ...k krf x rax ra x     is of degree k so kra I . 

Hence, Ik is a left ideal of R. 

If ka I  and 0a  , then 

1 1( ) ... Ak kxf x ax a x    is of degree k + 1. 

1.ka I    

Hence, 1 0.k kI I k    

Now, we have an ascending chain 0 1 2 1... ...kI I I I       of left-ideals of R. 

Since R is left Noetherian, therefore there exists a positive integer d such that  

0.d d iI I i    
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Since R is left Noetherian, therefore each ideal of R is finitely generated as a left R-module. Let 

1 2
I , ,...,

nkk k k ka a a , that is, 
1

.
k

j

n

k k
j

I Ra


  

Now, by definition of Ik; there exists polynomial 
1 1( ) ..., where 1 j n .

j j j

k k
k k k kf x a x a x       

Let    ,

0, 1 10
( ) ( ) .

k k

j j

dd n n

k kk j jk
T f x f x

  
    

Let B T  (The left ideal generated by T) 

0 1
[ ] ( ).

k

j

nd

k
k j

B R x f x
 

  

We shall prove that A = B. 

Let ( )f x A  and suppose deg(f(x)) = n. We write 

f(x) = axn + a1xn-1 +... 

We prove the result by induction on n. 

If n = 0, then f(x) = ax0 (a 0) and a 0I . 

0

00 01 02 0 0
1

, ,...,
n

n j
j

I a a a Ra


   

0 01 01 2 02 0... ,n n ja ra r a r a r R       

        
0

0
1

( )
n

j j
j

r f x


  

a B  , 

that is, ( )f x B  

Let n  1 and suppose that the result holds for all polynomials in A. that is, ( )g x A and deg(g(x)) < n. 

( ) .g x B   

Now either n d or n < d. 

Case-I. Suppose n d and n da I I   and  

1
[ ]

dn

d dj
j

I Ra k d
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1
.

dn

d j dj
j

I r a


   

Consider the polynomial 

1
( ) ( ) .

dn
n d

j dj
j

g x r x f x B



   

Now, ( )djf x is a polynomial of degree d with leading co-efficient j djr a . 

Hence, the leading co-efficient of g(x) is 
1

dn

j dj
j

r a a


  and it is a polynomial of degree n. 

Now ( )g x B  and B A  

( ) ( )f x g x A    and it is a polynomial of degree n - 1 and hence by induction hypothesis 
( ) ( ) .f x g x B   

Since ( )g x B , it follows that f( ) .x B  This completes the induction. 

Case-II. n < d. 

Now, 
1

mn

n nj
j

I Ra


  and na I  

1
, .

mn

j nj j
j

a r a r R


    

Consider 
1

( ) ( ) .
mn

j nj
j

g x r f x B


   

Now, g(x) is of degree n and leading co-efficient is 
1

.
mn

j nj
j

r a a


  

Hence ( ) ( )f x g x A   is of degree atmost n - 1 and hence by induction hypothesis ( ) ( ) .f x g x B   

Since ( ) ( ) .g x B f x B    

Hence, in either case .A B  

But .B A  

A B.   

Since B is finitely generated, therefore A is finitely generated. 
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7.3.1. Proposition. (Converse to Hilbert Basis Theorem) If R[x] is left Notherian, then so is R. 

Proof. Let I be the ideal of R[x] generated by x over R[x]. 

that is, I = <x> = R[x]x. 

Then I is an ideal of R[x]. 

Define a map [ ]: R xf R I  by  

  f(a) = a + I. 

Now, f(a + b) = a + b + I = (a + I) + (b + I) = f(a) + f(b) 

and f(ab) = ab + I = (a + I)(b + I) = f(a)f(b). 

Thus, f is ring homomorphism. 

Now, let f(a) = f(b) 
 a + I = b + I 
  a - b + I = I = R[x]x 

 a - b ∈ I = R[x]x 

  a - b = f(x)x for some f(x) ∈ R[x] 
  f(x)/ a - b. 

If a b , then deg(a - b) = deg(f(x)) + 1. 
  0 = deg(f(x)) + 1, a contradiction. 

Thus, a = b.  
Hence f is one-one. 

Let [ ]( ) , ( ) [ ].R xg x I g x R xI    

Suppose, 0 1( ) ... n
ng x b b x b x     

1
0 1 2( ... )n

nb b b x b x x      

0 ( )b h x x   

0( ) ( )g x I b h x x I     0 . [ h(x) R[x] h(x) x I]b I      

Now, 0b R  and 0 0( ) ( ) .f b b I g x I     

Hence, f is onto. 

Therefore, f is an isomorphism of ring R. that is, [ ]R xR I . 

Since R[x] is left Noetherian and a factor ring of Noetherian is again Noetherian. It follows that R is 
Noetherian. 
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7.3.2. Theorem. Let R be a left Noetherian ring and 1 2, ,..., nx x x  be n independent indeterminants. Then, 

1 2[ , ,..., ]nR x x x is also Noetherian. 

Proof. We know that R is left Noetherian iff polynomial ring R[x] is Noetherian. 

We prove the result by induction on n. 

If n = 1, then, R[x1] is left Notherian. 

If n = 2, then, 1 2 1 2[ , ] [ ][ ]R x x R x x , is left Noetherian, since R[x1] is Noetherian. 

Suppose that n > 2 and 1 2 1[ , ,..., ]nR x x x  is left Noetherian. 

Then, 1 2 1 2 1[ , ,..., ] [ , ,..., ][ ]n n nR x x x R x x x x  is left Noetherian. 

This completes the proof. 

7.3.3. Theorem. Let S be a sub-ring of R such that 1 1R S   . Suppose S is left Noetherian and R is 
generated by finite number of elements as an algebra over S. Then, R is also left Noetherian. 

Proof. Let 1 2, ,..., nx x x R  and R is generated by 1 2, ,..., nx x x  as an algebra over S, that is, every element 

of R is a polynomial function in the variables 1 2, ,..., nx x x  with co-efficient in S, that is, 1 2[ , ,..., ]nR x x x . 

Since S is left Noetherian, by above theorem, 1 2[ , ,..., ]nS x x x  is left Noetherian and so is R. 

7.4. Nil Left Ideal. 

Let R be a ring and I be a left ideal. If given a I , there exists a positive integer n depending upon 'a' 
such that 0na  , then I is called nil left ideal of R. 

If a R and 0na  for some positive integer n, then a is called nilpotent element of R. Thus, a left ideal 
I of R is nil if every element of I is nilpotent. 

7.4.1. Nilpotent Ideal. 

A left ideal I of R is called nilpotent if there exists a positive integer n such that In = {0}. that is, for 
every a1, a2,...,an ∈	I, 

a1.a2...an = 0. 

In particular, for every a∈I, 


n times
. ... 0a a a  , that is, an = 0 

that is, a is nilpotent element of R. Hence, a nilpotent left ideal is a nil left ideal. 

7.4.2. Theorem. In a left Artinian ring, every nil left ideal is nilpotent. 

Proof. Let R be a left Artinian ring and I be a nil left ideal of R.  

We shall prove that I is nilpotent. 
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Consider the decreasing chain 2 3 1... ...m mI I I I I        of left ideals of R. 

Since R is left Artinian, there exists a positive integer k such that Ik = Ik+1 =... 

that is,  0.k k iI I i    

Let J = Ik. Then, J is left ideal of R such that J2 = Ik.Ik = Ik = J. 

We claim that J = {0}. 

Suppose J {0}. 

Let £ = {A : A is left ideal of R contained in J such that JA {0}} 

Now, JJ = J2 = J {0} and J is left ideal of R contained in J. 

£ £ .J     

We know that if R is left Artinian, then every non-empty set of left ideals of R has a minimal element. 

Let A be the minimal element of £ such that JA {0}. 

Hence, there exists a( 0)A such that Ja {0}, otherwise JA = {0}. 

Also, aA and A is left ideal of R contained in J. 

.B JJa A     

Thus, B is a left ideal of R and  

JB = JJa = Ja = B {0}. 

£.B   
Since B A and A is the minimal element of £ . 

.B A   

that is, A = Ja = B. 

Now, a A Ja  . 

a xa   for some x J . 

Now, a = x(xa) = x2a, a simple induction shows that a = xna 1n  . 

Now, x J I   implies that x is a nilpotent element. 

Let m be a positive integer such that xm = 0. 

Then, a = xma = 0a = 0, that is, a = 0, a contradiction. 

Thus, J = 0, that is, Ik = {0}, that is, I is a nilpotent left ideal of R. 

Note. A ring with unity is called a division ring if every non-zero element of R is invertible. 
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7.4.3. Proposition. An Artinian domain is a division ring (Skew-field). 

Proof. To prove that R is a division ring, we shall prove that every non-zero element of R is invertible. 
Let a ∈ R be a non-zero element. 

Let k k
kI a Ra  , that is, left ideal of R is generated by ak. 

Now, if y ∈ Ik+1y = rak+1 = (ra)ak ∈ Ik, r ∈ R, thus  1 0.k kI I k     

So, we have a decreasing chain  

1 2 1... ...n nI I I I       

of left ideals of R. 

Since R is left Artinian, so there exists a positive integer k such that 

0k k iI I i    

that is, 0k k ia a i   . 

Now 1k k ka a a    

1k ka ra    for some r R  

k ka raa   

(1 ) 0.kra a    

Now, R is a division ring and 0 0ka a    and therefore 1 0ra  , that is, 1ra  , that is, every 
element of R is left invertible. By the same reasoning, there exists b R  such that 1 .br  

Then, ( ) ( ) .1 .a br a b ra b b     

Hence, r is the inverse of a and hence R is a division ring. 

7.4.4. Prime Ideal. Let R be a ring. An ideal P of R is called a prime ideal if given ideals A and B such 
that AB P implies either A P  or B P . 

Remark. In a left Artinian ring every prime ideal is maximal. 

7.4.5. Theorem. Let R be a left Noetherian ring. Every ideal I of R contains a finite product of prime 
ideals. 

Proof. Let R be a left Noetherian ring. We shall prove that every ideal of R contains a finite product of 
prime ideals. Let  

£ = {I : I is ideal of R such that I does not contain a finite product of prime ideals}. 

To prove the result, we prove that £ = ϕ. 

Suppose £  . 
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Since every ideal is a left ideal and R is left Noetherian, therefore £ must have a maximal element, say I. 

Now, I£, so I is not prime ideal, so there exist ideals A and B of R such that the product AB I
implies neither A I  nor B I . 

Consider the ideals, I1 = I + A and I2 = I + B. 

Since I is maximal ideal of £, therefore I1 and I2£. 

Hence there exist finite number of prime ideals, say 1 2, ,..., mP P P  and 1 2, ,..., nP P P   such that  

1 2 1... mPP P I  and 1 2 2... nP P P I    . 

Now, 1 2 1 2 1 2... ...m nPP P P P P I I     

Let 1 2x I I , then 1 2, , zi i i i
finite

x y z y I I   . 

Now, 1i i i iy I I A y c a       where ,i ic I a A   

and 2i i i iz I I B z d b       where ,bi id I B  . 

Then, ( )(d ) d di i i i i i i i i i i i i iy z c a b c c b a a b I        [ ,d , ,b & ]i i i ic I a A B AB I     

Hence, i i
finite

x y z I  . 

From this, it follows that 1 2 1 2... ...m nPP P P P P I    , that is, I contains a finite product of prime ideals, a 
contradiction and this contradiction proves that £ = ϕ, that is, every ideal of R contains a finite product 
of prime ideals. 

7.4.6. Boolean Ring. A ring R is called Boolean Ring if 2 .x x x R    Suppose R is a Boolean ring, 
then 2 .x x x R    Then 

2( ) ( )x y x y    
2 2x y xy yx x y       

x y xy yx x y       

, y R .xy yx x      

Also, 2( ) ( )x x x x    

0x x    

R .x x x      

Now, ( yx) yx .xy xy       

Therefore, R is a commutative ring. 
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Remark. Let R be a Boolean Noetherian ring, then 

...2 2 2
Z Z ZR Z Z Z     

and so if a Boolean ring which is also Noetherian, then number of elements in R is 2n where n is a 
positive integer. 

Remark. If a, b R (ring) such that ab = 1 and 1.ba   Define 1 1 .i j i j
ije b a b a    

We shall prove that (i) 
0

ij kl
il

if j k
e e

e if j k


  
 

(ii) 0iie   

(iii) 1.iie   

We have, 1 1 1 1( )( )i j i j k l k l
ij kle e b a b a b a b a       

1 1 1 1 1 1 1 1 .i j k l i j k l i j k l i j k lb a b a b a b a b a b a b a b a            

Suppose j k . Then, either j k  or j k . 

First suppose that j k . 

1 1.j k     

Now, 1 1 1 1 1 1 1 1 1 1i j k k k l i j k k k l i j k k k l i j k k k l
ij kle e b a a b a b a a b a b a a b a b a a b a                  

Since 1 0.m ma b m    

1 1 1 1 1 1 1 1i j k l i j k l i j k l i j k l
ij kle e b a a b a a b a a b a a                 

1 1 1 1 0.i j l k i j l k i j l k i j l kb a b a b a b a                 

Similarly, we can prove that 0ij kle e   if j k . 

Suppose j k , then  

1 1 1 1 1 1 1 1i j j l i j j l i j j l i j j l
ij kl ij jle e e e b a b a b a b a b a b a b a b a             

1 1i l i l i l i lb a b a b a b a     1 1 .i l i l
ilb a b a e     

Hence, 
0

kl
il

if j k
e

e if j k


  
. 

(ii) Take .i iif e  

Then, .i i ii ii ii if f e e e f    
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if  is idempotent. 

Suppose 0if  , then 

1 1 0i i i i
i iif e b a b a      

1 1i i i ib a b a    

1 1 1 1 1 1i i i i i i i ia b a b a b a b        

1 ,ba   a contradiction. 

Hence 0.iie   

(iii) Suppose 1.if   Take j i , then 

. ( 1)i j ii j j iif f e f f e    

Again, 0. [ ]i j ii jjf f e e i j    

Hence 0jf  , a contradiction. 

Hence, 1.iie   

7.4.7. Theorem. Let R be left Noetherian ring and , Ra b  such that 1ab  , then 1ba  . 

Proof. Let R be a left Noetherian ring and , Ra b  such that 1ab  . We have to show that 1ba  . 

Suppose that 1ba  . Now, 1ab   

( ) ba ab ab   

2 2 1.a b   

A simple induction shows that 1 0.m ma b m    

Define, 1 1 . (i 1, j 1)i j i j
ije b a b a      

Now, as shown in above remark 

0
ij kl

il

if j k
e e

e if j k


  
,  

0iie  and 1.iie   

Define, i iif e  and let 1 2 ... .k kI Rf Rf Rf     

Then, Ik is a left ideal of R and is contained in Ik+1 1.k   
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that is, 1 1.k kI I k    

Now, 1 1 1 2 1 1... I .k k k kf Rf Rf Rf Rf          

Suppose, 1 Ik kf   . Then, 1 1 1 2 2 ...k k kf r f r f r f      where ir R  

1 1 1 1 1 2 2 1 1...k k k k k k kf f r f f r f f r f f         0 [ 0 ]r sf f if r s    

1 0kf   , a contradiction. [ rf  is idempotent] 

Hence 1.k kI I 
  

Hence, we get an infinite properly ascending chain 

 1 2 3 1... ...k kI I I I I      
       

of left ideals of R, a contradiction because R is left Noetherian. 

Hence, ba = 1. 

7.4.8. Theorem. Let R be a Noetherian ring having no non-zero nilpotent ideals. Then R has no non-
zero nil ideals. 

Proof. Let, if possible, A be a non-zero nil ideal of R. 

Let   = { l (a) : a   A, a   0} be a family of left annihilators of all non-zero elements of A. Since 
each l (a) is a left ideal of R and A   {0}, so   is a non-empty family of left ideals of R. Since R is a 
Noetherian ring, so   must have a maximal element, say, l (a).  

Now, let x   R be any arbitrary element, then ax   A  [ A is an ideal of R]  

But A is a nil ideal so ax must be a nilpotent element that is, there exist a smallest positive integer k such 
that  

  (ax)k = 0   (ax) (ax)k–1 = 0   ax   l  --1( )kax     (1) 

Now, we see that (ax)k–1   0 and (ax)k–1 A   l  --1( )kax      

Now, we prove that l(a)   l  --1( )kax   

Let yl(a)   ya = 0   (ya)x = 0    y(ax) = 0 

    y(ax)k–1 = 0   y   l  --1( )kax    l(a)   l  --1( )kax   

But l(a) is a maximal element of  , so l(a) = l  --1( )kax     (2)  

By (1) and (2), we have  ax   l(a)   

      a x a = 0   x   R  

      a R a = 0 
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Let J = R a R, then, J2 = R a R R a R   R a R a R     [R R   R] 

      = R (a R a) R = {0}  

that is,, J is a nilpotent ideal of R.  

But R has no non-zero nilpotent ideal, so we must have  

    J = {0} that is,, RaR = {0}      (3) 

Now, consider the ideal 

     B = < a > = R a + a R + R a R + a   

Let   D = R a + a R + R a R = R a + a R     [By-(3)] 

Then,   D2 = (Ra + aR) (Ra + aR) = R a R a + a R R a + R a a R + a R a R  

        R a R a + a R a + R a R + a R a R [ R2 R, RaaR RaR] = {0}   

as R a R = a Ra = 0, that is, D is a nilpotent ideal of R. But R has no non-zero nilpotent ideal, so we 
must have D = {0} 

Hence, we obtain B = a  

Now, a   A and A is a nil ideal so ‘a’ must be a nilpotent element that is, there exists a smallest 
positive integer t such that at = 0. 

Then,  Bt = a  .a ...a  (t times) = at   = {0}, that is, B is nilpotent ideal of R. But R has no non-
zero nilpotent ideal, so B = {0} 

    a   = {0}  

Now   a.1   a  = {0}   

     a.1 = 0  

     a = 0, a contradiction.  

Hence R has no non-zero nil ideal. 

7.4.9. Proposition. Let R be a left Noetherian ring. Prove that sum of nilpotent ideals of R is again a 
nilpotent ideal of R. 

Proof. Let R be a left Noetherian ring and  I 
be a family of nilpotent ideals of R. 

Suppose, I I


  . 

Then, I is an ideal of R, since sum of ideals is again an ideal. 

Since R is left Noetherian, therefore I is generated by finite number of elements, say 1 2, ,..., .nx x x I  

Now, ix I   there exists a finite subsets i  of   such that 
i

ix I


  . 
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Take, 
1

n

i
i

   . Then, ix I i
 

   

1 2, ,..., nI x x x I I
 

          I I
 

    

and   is a finite subset of  . Thus, we may assume that 1 2 3 ... mI I I I I      and each kI  is 
nilpotent. 

Thus, to prove the result it is equivalent to prove that sum of finite number of nilpotent ideals is again a 
nilpotent ideal. 

We prove the result by induction on m. 

If m = 2, then 

1 2 1

2 1 2
.I I I

I I I
    

Now, I1 is nilpotent ideal of R, so 1

1 2

I
I I  is nilpotent ideal of 

1 2
.R

I I  Hence, 1 2

2

I I
I

  is a nilpotent 

ideal. since I2 is a nilpotent ideal of R, it follows that I1+I2 is a nilpotent ideal of R. 

Thus, the sum of two nilpotent ideals is again a nilpotent ideal of R. 

Let m > 2 and suppose that the result hold for (m - 1) nilpotent ideals, that is, 1 2 3 1... mI I I I      is 
nilpotent. 

Now, sum of two nilpotent ideals is again nilpotent, so the sum of 1 2 3 1... mI I I I      and mI , that is, 

1 2 3 ... mI I I I     is also nilpotent. 

Remark. Let R be a ring and A and B be ideals of R such that A B . Then, B is nilpotent iff both A 

and B
A  are nilpotent. 

7.4.10. Proposition. In a left Noetherian ring, every nil ideal is nilpotent. 

Proof. Let £= I 
be the family of all nilpotent ideals of R and I I



  . 

Then, I is an ideal of R. Also, we know that in a left Noetherian ring sum of nilpotent ideals is again 
nilpotent and hence I is nilpotent ideal of R. 

Consider the quotient ring R
I . 

Let J
I  be the nilpotent ideal of R

I , where J is an ideal of R containing I. Now, J
I is an nilpotent 

ideal of R
I  and I is nilpotent ideal of R. Hence, £J  . 

Thus, there exists 0  such that 
0
.J I  
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Now, 
0

I I I J I 


     

.I J   

Hence, J
I  is the zero ideal. that is, J

I = {I}. 

Therefore, R
I has no non-zero nilpotent ideal. Since R is left nilpotent, therefore, R

I  is left 
Noetherian. 

Thus, R
I  is left Noetherian ring such that R

I  has no non-zero nil ideal. 

Let k be a nil ideal of R, then K + I is an ideal of R 

K I
I

  is an ideal of R
I . 

Now, K I K
I K I

    and K is nil ideal, so K I
I

  is nil ideal. Hence, K I
I

  is a nil ideal of R
I . 

Since K I
I

 has no non-zero nil ideal. 

Therefore, { }K I II
   .K I I K I      

Since I is a nilpotent ideal, it follows that K is also a nilpotent ideal of R. Thus, every nil ideal in R is 
nilpotent. 

7.4.11. Example. Example of a ring which is both Noetherian as well as Artinian. 

Proof. Let R be a ring having only finite number of left ideals. Clearly, every properly ascending chain 
or a properly descending chain is finite and therefore R is left Noetherian as well as left Artinian. 

7.4.12. Example. Example of a ring which is Noetherian but not Artinian. 

Solution. Let R=Z, the ring of integers. Now, since Z is a P.I.D., so every ideal of R is generated by a 
single element that is, if I is an ideal of R, then ∃ m ∈ I, m0 such that I=mZ. that is, every ideal of R is 
finitely generated, therefore R is Noetherian. 

Let Ik = 2k Z, k	 0 
Now, 2k+1∈ Ik+1, and 2k+1 =2. 2k ∈ 2k Z=൏ 2k =Ik, so ൏ 2k+1⊆ Ik and thus Ik+1⊆ Ik 

Now, 2k ∈ Ik.. If 2k ∈ Ik+1, then 2k = 2k+1z, where z ∈Z, so 1=2z , ehich implies 

z = ଵ
ଶ
∈ Z, a contradiction. 

Hence 12k
kI   and so Ik+1   Ik 

Thus, 

 0 1 ... ...nI I I      

is an infinite properly descending chain of ideals of R. 
Therefore, R is not Artinian.  
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7.4.13. Example. Example of a ring which is neither Noetherian nor Artinian. 

Solution. Let R be a ring and x1, x2, ..., xn... be infinite numbers of commutingindeterminants over R. 
Consider the polynomial ring R[x1, x2, ..., xn]=S. Let Ik be the left ideal of S generated by x1, x2, ..., xn, 
that is,  

  Ik =൏ x1, x2, ..., xn = Sx1 +Sx2+...+SxK. 

Now, it is clear that Ik  Ik+1 

If  xk+1∈ Ik+1.Then,  

xk+1= r1x1+ r2x2+...+ rkxk where ri∈ S = R[x1, x2, ..., xn...] 

The L.H.S. is a polynomial in the single indeterminates xk+1 while the R.H.S. is a polynomial in the 
indeterminants x1, x2, ..., xn. 

Therefore these two polynomials cannot be equal. 

Hence, xk+1 ∉ Ik ⇨ Ik⊆ Ik+1. Thus, we have  

1 2 ... ...nI I I     

is an infinite properly ascending chain of left ideals of S 

Hence,S is not left Noetherian. 

Similarly, we can prove that S is not right Noetherian. 

Let,  B0={x1,x2,... xn,...} 

B1= B0-{x1} 

B2= B0-{x1,x2} 

. . . 

Bn =B0-{x1,x2,... xn} 

Let Jn be the left ideal of R[x1,x2,... xn,...]=S generated by Bn. 

Now, it is clear that  

0 1 ... ...nJ J J     

is an infinite properly descending chain of left ideals of S. 

Therefore, S is not left Artinian. 

Similarly, we can prove that S is not right Artinian. 

7.4.14. Proposition. Let	ܴ	ܾ݁	a P.I.D and I് ሼ0ሽ be an ideal of R. Then, R/I is both Noetherian and 
Artinian. 

Proof. Since R is P.I.D.,so every ideal of R is generated by a single element. Thus, every ideal of R is 
finitely generated and so R is Noetherian.  
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Now, R is Noetherian and a quotient ring of a Noetherian ring is a Noetherian, so R/I is Noetherian.  

Let a ∈I be such that a= aR=൏ ܽ . Since I് {0}, so a ്0. 

If a=1 or a unit, then I=R and  

R/I= R/R ≅ {R}= the zero ring . 

But zero ring is trivially Artinian ring so R/I is Artinian. 

Suppose, a is not a unit, then 1 2
1 2 ... m

ma a a a   where each ia i is an irreducible element of R and each ߙi´ 
s are positive integers. 

 Let J/I be an ideal of R/I. Here, J is an ideal of R, so there exists an element b∈ J such that 

   J = bR = < b> 

   I = < a >⊆ J = <b> 

which implies  a= br for some r∈ R . 
So,   b/a. 

Thus,   1 2
1 2 ... m

mb a a a   where 0  ߚ   ߙ

Now each ߚ can be selected in (ߙ +1) ways. 

Therefore, the number of choices for b is (ߙଵ +1) (ߙଶ +1)... (ߙ +1), so the number of choices for b is 
 which means the number of choice for J/I is ,( +1ߙ) ...(ଶ +1ߙ) (ଵ +1ߙ)

  ( +1ߙ) ...(ଶ +1ߙ) (ଵ +1ߙ)

Thus, R/I has only finite number of ideals. 

We know that a ring which has finite number of ideals is an Artinian ring. 

7.5. Ring of Homomorphisms. The collection of all homomorphisms from a R-module M to itself is 
denoted by  ,RHom M M  and is a ring. 

7.5.1. Opposite ring. Let (R, +, . ) be a ring. Then the opposite ring of R, denoted by Rop, is defined as 
the ring (R,+, o), where the operation o is given as  

    .x y y x  for all x, yR 

Results. 

(i) Let R be a ring and Rn denote the ring of nn matrices over R then op op(R )  (R )n n  

(ii) If R is a division ring then opR  is also a division ring. 

(iii) If a ring R is direct sum of rings R1, R2, …, Rk that is,, R = R1  R2 ...Rk, then  

 op op op op
1 2R = R  R ...  R k   .  
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(iv) Let M be a R-module such that M = M

  is the sum of a family of simple R-modules  M 

, 

then there exists a sub- family  M  
 such that M =   M

 
   

In words, we can say that if a R-module M is sum of simple R-modules, then it can be represented as the 
direct sum of a sub family of family of these simple R-modules. 

Now, we will state some lemma´s, which will be useful for proving the Wedderburn- Artin Theorem. 

7.5.2. Lemma. Let 1 2 ... nM M M M     be a left R-module (Mi ´s are submodules of M) and let Aij 
= HomR (Mi Mj ). Then, 

HomR (M, M)=

11 12 1

221 22

1 2

    ...
    ...

... ...       ... ...
    ...

n

n

n n nn

A A A

AA A

A A A

 
 
 
 
 
 
 

. 

7.5.3. Lemma. Let 1 2 ... nM M M M    , where Mi ≇Mj, i≠j and each Mi is a simple R-sub module 
of M. Then 

HomR (M, M)=

1

2

0 0   ...    0
0 0   ...    0
... ...   ...   ......
0 0 0    ...   n

D
D

D

 
 
 
 
 
 

 

where each Di=Aii and is a division ring. 

7.5.4. Lemma. Let 1 2 ... nM M M M    , where Mi is simple and i jM M ∀ i and j. Suppose 

   1 1 1,R RHom M M End M D   then, HomR (M, M) ≅ Mn(D) 

where, Mn(D) = 

...   

...   
... ... ...   ...

...   

D D D
D D D

D D D

 
 
 
 
 
 

, where D is a division ring. 

7.5.5. Lemma. Let A be minimal left ideal of R. Then either A2={0} or A=Re, e is an idempotent in A. 

7.5.6. Wedderburn- Artin Theorem. Let R be left (or right) artinian ring with unity and no nonzero 
nilpotent ideal. Then, R is isomorphic to a finite direct sum of matrix rings over division rings. 

Proof. First, we prove the following lemmas: 

7.5.6.1. Lemma. Let R be a left Artinian ring with unity having no nonzero nilpotent ideals. Prove that 
every nonzero left ideal of R contains nonzero idempotents. 
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Proof. Let A be a nonzero left ideal of R and let 

J1={ B⊆A : B is a nonzero left ideal of R} 

Now, A≠ {0}and A⊆A ⇨A∈ J1, then 

J1 ≠ ∅ 

Since R is left Artinian, therefore, J1 has a minimal element, say B. 

Then, B is a minimal left ideal of R. 

Then, either B2 = {0} or B = Re for some idempotent e ∈	B. 

Suppose B = {0}. 

Consider the ideal J= BR 

Then, J2 = BRBR ⊆ BBR = B2R= {0}. 

Thus, J is a nilpotent ideal of R. By the given condition J = {0}, that is, BR = {0}. 

 Now, b = b.1∊ bR⊆ BR = {0}, which implies b=0 for all b∈ B and so  B = {0}, a contradiction. Hence, 
B= Re 

Now, B⊆ A and e = e.1 ∊ Re = B ⊆A, so 

 e ∊ A.  

Thus, A contains nonzero idempotents. 

7.5.6.2. Lemma. Let R be a left artinian ring with unity having no nonzero nilpotent ideals. Then, every 
left ideal of R is generated by an idempotent. 

Proof. Let A be any left ideal of R and let S be the set of all nonzero idempotent of A. Then, S ≠ ∅, 
since by lemma 7.5.6.1., there exists an idempotent e ∊ A. 

Now, consider the left ideal R(1-e) ∩ A, e ∈ S. 

and let  

 J = { R(1-e) ∩ A, e ∈ S } 

Since S is nonempty, so J ≠∅ 

Again R is left Artinian, since J has a maximal element, say R(1-e) ∩ A where e ∈ S. 

We claim that R(1-e) ∩ A= {0} 

Suppose R(1-e) ∩ A ≠ {0}. Then, it is a nonzero left ideal of R. Therefore, by lemma 7.5.6.1., this left 
ideal has a nonzero idempotent, say e1. 

Now, e1	∈ R(1-e) and e1 ∈A 

Now, e1 ∈A e1 ≠ 0 ⇨ e1 ∊ S. 

Also, e1∈ R(1-e) ⇨ e1 = r(1-e) for some r∊ R, so 
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e1 e = r(1-e)e = r(e-e2 ) =r(e-e) =r.0 =0 

Let e' =e+ e1- e e1 ∊ A. Then  

 	e′	ଶ = e' e' =( e+ e1- e e1 )( e+ e1- e e1 )  

        = e2+ e e1 - e2 e1 + e e1 + e1
2- e1 e e1 - e e1 e- e e1

2 + e e1 e e1  

             = e+ e e1 - e e1 +0 + e1- 0.e1 -e.0- e e1 + e .0.e1  

          = e+ e1 - e e1 = e' 

and e1 e' = e1e + e1
2 - e1ee1 = 0+e1 - 0. e1 

   = e1 ≠ 0 

Thus,  e1 e' ≠ 0 ⇨ e' ≠ 0    ( *) 

Hence,e' is an idempotent and so e'∊ S. 

But then R(1-e' ) ∩A ∊ J 

Now, r1(1-e')= r1(1-e -e1 + e e1 )  = r1(1-e)- r1r(1-e)+ r1e r(1-e) = R(1-e) [ r, r1, e ∊ R) 

So,   R(1-e')⊆ R(1-e) 

and thus, R(1-e' ) ∩A ⊆ R(1-e) ∩A. 

Now, e1∊ R(1-e) ∩A. 

Suppose, e1∊ R(1-e' ) ∩A. Then, e1 = s(1-e' ), s∊ R, therefore 

 e1 e' = s(e' - e'2) = s(e' - e') =0 

a contradiction, because e1e' ≠ 0    ( by *) 

Hence, e1 ∉ R(1 - e' ) ∩A 

However, in that case R(1 - e' ) ∩A   R(1 - e) ∩A. 

Now, R(1 - e' )∩A and R(1 - e)∩A ∊ J2 and R(1 - e)	∩ A is the minimal element of J2, a contradiction.  

The contradiction proves that 

   R(1 - e) ∩A = {0}    (**)  

Let a∊ A, then a(1 - e) = a - ae ∊ A and a(1 - e) ∊ R(1 - e) 

implies,  a(1 - e) ∊ R(1 - e)	∩A = {0} 

implies,  a(1 - e) ∊ {0}  

implies, a(1-e) =0 for all a ∊ A 

implies, a = ae for all a ∊ A 

implies, A⊆ Ae ⊆ Re ⊆A 

implies, A = Re 
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Hence, every left ideal of R is generated by an idempotent. 

7.5.6.3. Lemma. Let R be a left Artinian ring with unity having no non-zero nilpotent ideal. Let J be the 
set of all non -zero minimal left ideals of R. Prove that R= I


 ; J ={ I⋋:⋋∈∧}. 

Proof. Let J be the set of all minimal left ideals of R. 

Since R is left Artinian, so J ≠φ. Let J = { I⋋ }⋋∈∧. Put I= I

 . Then, I is a left ideal of R. By lemma 

7.5.6.2., there exists an idempotent e ∊ I such that I = Re. 

We claim that R(1-e) ={0}. Now, this left ideal will contain a minimal left ideal of R, say B, so 

B ∊ J, which implies   B ⊆ I = Re 

Now, B ⊆ Re ∩ R(1 - e) = {0}    (By (**) ) 

which implies   B = {0} 

A contradiction. Hence, 

R(1-e) ={0} ⇨R =Re. 

Hence, I = Re = R, and so R= I

 .  

Proof of the theorem . We know that a minimal left ideal is a simple submodule of RR.  

⇨ RR is the sum of simple submodules. 

Therefore, there exists a subset ∧' ⊆∧ such that 

RR = ⊕∑I⋋. 

Now, 1∈R = RR, therefore 

1 = x⋋1+ x⋋2+...+ x⋋n, where ⋋i∈∧'  

so, r = rx⋋1+r x⋋2+...+r x⋋n,  

so, R ⊆ I⋋1+ I⋋2+...+ I⋋n ⊆ RR 

so, RR ⊆ I⋋1+ I⋋2+...+ I⋋n 

We may assume that 

R = RR = I1⊕I2 ⊕ ... ⊕ In. 

where each Ij is a minimal left ideal of R. 

Suppose Ij = Rej where ej ϵ Ij is an idempotent. 

Thus we may write  

R = RR = Re1 ⊕ Re2 ⊕ ... ⊕ Ren 
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Suppose  

R = RR = (Re1 ⊕ Re2 ⊕ ... ⊕ Ren) ⊕ (Re1 ⊕ Re2 ⊕ ... ⊕ Ren)  

where nk =n, where every two ideals in every bracket are isomorphic as left R-module and the ideals in 
the different brackets are not isomorphic. ( This can be done if necessary by rearranging and 
renumbering the ideals in the desired form). 

Take R = M1 ⊕ M2 ⊕ ... ⊕ Mk, where Mi is the sum of left ideals in the ith bracket. 

Then,  Hom ( RR, RR) ≅
11 12 1

1 2

  ...
... ...    ... ...

 ...

k

k k kk n n

A A A

A A A


 
 
 
 
 

 

where Aij = HomR (Mi, Mj ) 

We know that  

(i) if X = X1 ⊕ X2 ⊕ ... ⊕ Xm, where each Xi is a left R- module of M such that  

 HomR (Xj, Xi )={0}  for all  i ≠ j. 

Then, HomR (Xi, Xj ) = 

11

22

0    ... 0
 ...0 0

... ......    ...
0 0    ... mm

A
A

A

 
 
 
 
 
 

, where Aij = HomR (Xj, Xi ). 

(ii) If B = B1 ⊕ B2 ⊕ ... ⊕Bm  and  C = C1 ⊕ C2 ⊕ ... ⊕Ct,  where Bi's & Ci's are simple 
submodules of M & Bi≇ Cj  for all  i ≠ j, then HomR (B, C ) = {0} 

(iii) if A= A1 ⊕ A2 ⊕ ... ⊕An and each Ai is simple and Ai ≅ Aj  for all  i ≠ j, then, 

HomR (A, A ) ≅ Mm (D), where D = HomR (A1, A1 ) is a division ring.  

Using all these, we conclude that 

 Aij = HomR (Mj, Mi ) = {0} if i≠j. 

and  Aii = HomR (Mi, Mi ) ≅  
it iM D , 

where Di≅ HomR  1 11 1Re ,Re
i in n  

 and Mi=  1 1Re ... Re
i in n     

Hence, 

 
 

     

1

2

1 2

1

2R , R

1 2

(D ) 0                ... 0

(D )     ...0 0
Hom R R

... ......                ...
0 0                ... (D )

.........
k

k

t

t

t k

t t t k

M

M

M

M D M D M D
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We Know that Rop ≅ HomR (RR, RR) 

Hence, Rop is isomorphic to finite direct product of matrix rings over the division rings . 

From this we conclude that R = ( Rop)op is also isomorphic to finite direct product of matrix rings over 
the division ring. 

7.5.7. Maschke Theorem. If F is the field of complex numbers and G is a finite group, then 

    
1

...
kn nF G F F    

for some positive integers 1,..., kn n . 

Proof. We first prove that  F G  has no non zero nilpotent ideals.  

Let  1 2, ,..., nG g e g g  , and  i ix g F G  . Set 1* i ix g   , where i  denotes the complex 

conjugate of i . Then 

   2

1 2
*

n n

i i i
i i

xx g 
 

    

for some i F  . Hence, * 0xx   implies 2

1
0

n

i
i




 , so each 0i  ; that is 0x  . Thus, * 0xx   

implies 0x  . Let A be a nilpotent ideal in  F G . Let a A . Then *aa A , so *aa  is nilpotent, say 

 * 0raa  . (We may assume r is even.) Set  2*
r

b aa . Then 2 0b   and *b b . Thus, * 0bb  , which 

gives  2* 0
r

aa b  . Proceeding like this, we get * 0aa  . Hence, 0a  , which proves that  0A  . 

Hence,  F G  has no nonzero nilpotent ideals. 

Further,  F G  is a finite-dimensional algebra with unity over the field F. Therefore,  F G  is an 

artinian ring. Then by the Wedderburn –Artin theorem, 

        
1

1 ...
k

k
n nF G D D  , 

Where   ,1iD i k  , are division rings. Now each  
i

i
nD  contains a copy K of F in its center. In this way 

each  
i

i
nD  is a finite dimensional algebra over K (How?). Let   :iD K n    , and  ia D . Then 

21, , ,..., na a a  are linearly dependent over K. Thus, there exist 0 1, ,..., n    (not all zero) in K such that 

0 1 ... 0n
na a      . But since K is algebraically closed,  0 1 ... n

nx x K x       has all its roots 

in K. Hence, a K , which shows that  iD K F   and completes the proof. 



136 Noetherian and Artinian Modules 

 

7.6. Radical ideal. A two-sided ideal I in a ring R with unity is called a radical ideal with respect to a 
specified property P if 

1 . the ideal I possesses the property P and 

2. the ideal I is maximal for the property P, that is, if J is a 2-sided ideal of R having the property P, then 
J   I. 

7.6.1. Jacobson radical. Let R be a ring with unity, then the Jacobson radical denoted by J(R) is a 
radical ideal of R defined as  

J(R) = {a   R : 1 - a is a unit in R}. 

7.6.2. Example. In the ring of integers, J( Z ) = ( 0 ) . 

7.6.3. Radical of an Art inian Ring. 

7.6.4. Proposition. The Jacobson radical of an Artinian ring is the intersection of some finitely many 
maximal left (right) ideals. 

Proof. Let R be an Artinian ring and   be the family of all maximal left ideals of R. Let F be the family 
of all left ideals of R each of which is an intersection of finitely many maximal left ideals of R. 

Obviously F   as     F. Since R is Artinian, therefore, F has a minimal member, say 0
1

n

i
i

J M


 , 

where iM  . By definition of Jacobson radical, J(R)   J0. 

If M    , then J0M  F and so J0M = J0, by the minimality of J0 which means 

that J0   M, for all M    . Thus we get that J(R)   J0   i
m

M

  = J and hence J = J0, as required. 

7.6.5. Exercise. In a commutative Artinian ring, the only maximal ideals are ,1iM i n  , where 

1

( )
n

i
i

J R M


 . 

7.7. Check Your Progress. 

1. Every division ring is Noetherian. 

2. An Artinian integral domain with atleast two elements is a field. 

3. Subring of an Artinian ring need not be Artinian. 

7.8. Summary. 

In this section, we obtained results for Noetherian and Artinian. The relation between nil and nilpotent 
ideals. Also, observed that every nil ideal is nilpotent but the converse statement need not be true. Also 
the difference between these two is really interesting to study. 
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